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Summary. Among mathematical models of visual confusion of letters and similar
material, those that posit a feature detection process have been especially popu-
lar. The present study provides direct tests of several of the central assumptions
of such models with feature-stimuli composed of the blank, one of two straight
line features, or both line features positioned at a right angle. In one condition,
the two features were connected when they appeared together, whereas in the
other condition they were separated by a gap. A model which makes the strong
assumptions that the features are sampled (‘detected’) independently and then
reported in a direct, unbiased fashion, performed acceptably in both conditions.
Feature dependency models and those positing a biased decision process were
ruled out on the basis of poor fits or lack of parsimony. The perceptibility (d7)
of a specific feature depended on the stimulus that contained it in the Gap con-
dition but not in the Connected condition. The relative perceptibility of the
horizontal vs in the vertical features was also different in the Gap vs Connected
conditions. The results were compared with other recent studies, including ones
in which sampling independence was falsified, apparently because of greater
stimulus complexity, and employing a stimulus set that did not contain all possi-
ble combinations of features.
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Introduction

The concept of mental feature representations has played an important role over a wide
spectrum of areas in cognitive psychology in recent years. However, it has seemed par-
ticularly viable in visual perception, no doubt owing in large part to the noteworthy
physiological results on various species by Hartline (1940); Lettvin, Maturana, and Pitts
(1959); Hubel and Wiesel (1962); and, lately, many others. These findings indicated the
existence of neurons in the visual system in various species which responded more or
less exclusively to the presence of specific aspects of visual displays. In particular, Hubel
and Wiesel were pamarily responsible for demonstrating the operation of what appear
to be elementary geometric feature detection neurons in visual cortical areas 17, 18, and
19.

Although contemporary feature theories are not capable for explaining all aspects of
pattern perception, they are nevertheless highly attractive in that they offer a powerful
alternative to strict template matching (see, e.g., Reed 1973; Massaro and Schmuller
1975); especially in the recognition of simple forms such as letters. Provided one is pre-
pared to hypothesize which parts of a set of stimuli constitute the features, it is then
possible to develop and test mathematical models of pattern recognition based on fea-
ture detection in psychophysical settings (e.g., Rumethart 1971; Geyer and DeWald
1973). More recently, Wandmacher (1976) and Townsend and Ashby (1976) have be-
gun direct investigation of the axioms on which models are based. The present study
continues this investigation with particular emphasis on whether or not basic features
are sampled independently of one another.1

A popular method of testing hypotheses and models concerning the recognition pro-
cess is to compare them with an experimentally generated confusion matrix. A confu-
sion matrix has as rows the set of stimuli and as columns, the set of corresponding re-
sponses. In the situation with which we are concerned, each stimulus is associated with
exactly one response and P(R;[S;) is the probability that response | is given after presen-
tation of stimulus i. That quantity is thus the (i,j) entry in a confusion matrix. Similarly,
f’(RJ' S;) is the corresponding estimated probability. That is, ls(RiISi) is the observed pro-
portion of times that response i was given to stimulus i in an experiment; it may be com-
pared with the theoretically predicted P(R;IS;) after the parameters of a model are given
numerical values. The indices i and j will run from 1 to N where N is the number of
stimuli and responses. P(R;|S;) is thus the probability correct given stimulus i and is
placed in the (i,i) diagonal position of the confusion matrix.

Mathematically specified models of perceptual confusion have generally been com-
posed of two basic parts, a sensory part and a decision part. The sensory part typically
contains structure and parameters supposed to represent sensitivity, signal strength, and
stimulus similarity factors, whereas the decision part contains structure and parameters
that represent response bias, motivational and learning factors. Although decisional
structure will play a role in our analyses, the sensorv portion of the process will be our
primary focus in this paper.

The sensory assumptions of previous feature models that have actually been applied
to confusion data (sometimes implicitly) have been one or more of those listed below.

1 Because the terms ‘feature exrraction’ and ‘detection’ often carry connotations of questionable
peripheral physiology, we prefer the more neutral term ‘feature sampling’ in general psycho-
physical settings.
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Feature Sampling Assumptions

1. Presence or Absence of a Feature in a Stimulus. A certain feature either is contained
in a stimulus in full-blown form or is entirely absent.

2. All-or-none Feature Sampling. Features are detected or not. There are no in-between
representations, although it is not ruled out that an observation on a sensory continuum
could occur after which a yes-no decision is made as to the presence or absence of the
feature.

3. High Feature Discriminability of Sampling. Features are not misperceived as one an-
other. That is, 2 unique feature is never ‘sampled’ as a different feature.

4. Sampling Independence. This assumption states that the sampling (i.e., extraction,
detection) of a feature is probabilistically independent ofthe sampling of any other.
Thus, the probability that any particular subset of features is sampled can be written as
the oroduct of the separate probabilities of the individual features.

5. Across-stimulus Invariance. This assumption means that the average probability of a
particular feature being sampled does not depend on the particular stimulus of which it
is a part. One consequence of this assumption is that feature sampling probabilities do
not depend on the number of features contained in a stimulus and that the capacity at
this level must therefore be unlimited.

6. Across-feature Invariance. Here it is supposed that all features within a given stimulus
possess the same average probability of being sampled.

7. High Threshold Feature Sampling. Features may be lost from a presented stimulus,
but not gained (sampled) when they are not present in a stimulus. Thus, viewed in the
context of signal detection theory, feature ‘misses’ can occur but not feature ‘false
alarms’. A feature present in the stimulus will be referred to as a ‘real feature’, whereas
a feature that might be reported even though it is not contained in the stimulus will be
called a ‘ghost feature’.

After some subset of features has been sampled in the sensory process, it is tvpically
assumed that this sample is matched in some fashion against the individual sets of fea-
tures that make up the various possible stimuli. A subset of potential response alterna-
tives is formed (often called the ‘confusion’ or ‘candidate’ set; e.g., Geyer and DeWald
1973; Rumethart 1971), the particular members of which depend on the degree of simi-
lacity each bears to the sampled feature set. This matching and confusion-set-formation
process occupies a stage intermediate to the sensory phase and the final decision mecha-
nism, but may be included in the decision phase for convenience.

Finally, it is supposed that in the final decision phase, a response is selected from the
confusion set according to a set of probabilities on those alternatives belonging to the
confusion set. Various assumptions may be made about these probabilities, but the most
parsimonious, and at the same time presently viable, is to postulate that each response 1s
associated with a response strength (represented by a positive number) and that the prob-
ability of a particular response from the confusion set is given by the ratio of that partic-
ular response strength to the sum of all the response strengths of the alternatives in the
confusion set. Note that this tacitly assumes that the response strength is invariant across
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the various confusion sets, an assumnption recently questioned (Lappin 1978). However,
it is not easy to come up with a viable replacement that does not generate an unmanage-
able number of parameters. The possibility that Bayesian analyses govern this stage does
not appear to be justified (Wandmacher 1976).

Now let us discuss the sensory assumptions in a little more detail. Assumptions (1),
(2), and (3) occur in all of the feature models fit to visual confusion data and are ac-
cepted as postulates here. With regard to (1), Garner (1978) has defined a ‘feature’ as
either existing or not in a stimulus, without any in-between levels. Wether or not one
agrees with this definition in anv ultimate sense, all well-specified mathematical models
of confusion make this assumption. In some ‘realistic’ settings it might be necessary to
assume that features can exist on a continuum, but in many situations the present as-
sumption should suffice. Assumption (2) is probably reasonable as a first approxima-
tion, particularly since the all-or-none ‘threshold’ may be at the decisional level. How-
ever, situations can definitely be created where an explicit sensory continuum should
be postulated (see, €.g., Oden 1979). The third assumption almost certainly holds when
the features are very distinct, as is the case in most of the previous experiments where
explicit modeling of the feature processes occurred.

Assumption (4) is in some ways the most critical because if sampling independence
fails then one must know the rules of dependence in order to formulate a testable model.
Alternatively, feature similarity parameters might be written directly into P(Rj 1s)
formulae without specification of an underlving process. Such models are less attrac-
tive than models based on a more fully specified set of mechanisms.

Number (5) would hold if the perceptibility of a feature is independent of the rest
of the stimulus in which it is contained. Assumption (6) would be in force if all features
in a given stimulus were equally perceotible. Finally, (7) has generally been postulated
in mathematical feature models, in spite of the influence that the theory of signal de-
tectability has had in arguing against so-called high threshold notions (e.g., Green and
Swets 1966).

A brief presentation of the most critical previous investigations is in order.? Ina
study noteworthy for its experimental and theoretical conception, Wandmacher (1976)
investigated a class of models which included feature sampling independent as well as
dependent alternatives. Wandmacher's six stimuli were composed of one or two straight
lines, the latter being affixed at an acute angle. Sampling independence was supported
(Wandmacher’s stochastic independence), across-stimulus invariance (Wandmacher’s
context independence) was not, nor was across-feature invariance (his ‘equal probability’
constraint). The high threshold assumption (7) could not be tested directly because
no blank stimuli were included in the displays.

Townsend and Ashby (1976) employed four block letter stimuli constructed out of
equal length straight lines connected at right angles. The observers (henceforth referred
to as Os) were required to report the features they thought they saw as well as to make

2 Another type of paradigm has been employed in which a presented feature is one of two values
on some dimension, rather than, say, the presence of a particular line or curve. For example,
Schulze, Baurichter, Gerling, and Grobe (1977) employed two angle sizes as one of their binary
‘features.” The state of knowledge in pattern perception is not yet sufficiently advanced to
permit firm theoretical linkages between this and the present type of design.
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a letter decision. This permitted a tentative separation of the sensory and decision
phases of the hypothetical underlying process. Strong sampling dependencies were
found in the feature reports and the overall confusion matrices were as well predicted
by a much less detailed non-feature model (the choice model, Luce 1963; Townsend
1971, a, b). However, across-stimulus invariance held acceprably, and there was some
evidence that the degree of across-feature variability that existed was due to criterial
influences rather than purely sensory effects. Further, the stimuli were quite homog-
eneous, having about the same number of features (three or four) connected at right
angles, so that may be the reason that across-stimulus invariance was found in that
study but not in Wandmacher’s. That is, there may be a greater difference in the per-
ceptibility of a line by itself as compared with another line at an acute angle than there
is between three and four lines connected at right angles. Finally, the high threshold
assumption was falsified.

It was nor clear why Wandmacher found sampling independence while Townsend
and Ashby found dependence. One hypothesis is that independence can appear only
in the most simple of stimulus situations. Another is that certain subsets of sampled
features seem to the O as being impossible and are thus disregarded, or otherwise per-
turbing the feature reports. This latter alternative will be considered briefly in the
discussion section.

The former possibility was addressed in initial analyses of a confusion study in which
stimuli were composed of one or two straight lines (Townsend, Hu and Ashby 1980).
The two-lined stimuli were set at right angles to one another and were either physical-
ly connected or separated by a gap (hereafter referred to as the Connected and Gap
conditions). Both lines, neicher line (the blank stimulus), or either line separately
could be the stimulus in any given block of trials.

Two experiments were performed. The first used chree separate feature conditions:
™, -, as constituting the component features employed in a block of trials. The
second experiment used only [". In addition, the first experiment included Gap and
Connected trials within blocks, whereas the second experiment tested Gap vs Connec-
tion perception in separate blocks. These Gap and Connected conditions were meant
to ascertain whether sampling independence might be stronger with a greater distance
between features. Thus, a lateral interference hypothesis might oredict that the con-
nected features would evidence a negative dependence, whereas the separated features
might show a diminished or zero dependence. A preliminary report (Townsend, Hu,
and Ashby 1980) presented analyses of sampling independence on the set of trials
when both lines were present. Experiment 1 was flawed by an artifact which was
corrected in Experiment 2, but basically the results provided reasonable support
for independence.

The present paper extends the investigation to explanation of the entire confusion
matrix; that is, to an examination of the response frequencies based on all the four
types of stimulus presentation (neither, either, or both lines present in the stimulus).
Because of the artifact present in the first experiment, the following treatment will
be confined to Experiment 2. Suffice it to say that with models attuned to handle
the artifact, the basic conclusions are in agreement with those of Experiment 2, albeit
with model fits not quite so accurate. Henceforth, all references will be to Experiment
2. The models to be resred are given next.



264 J.T. Townsend et al.

The Models

In the preliminary analyses mentioned above (Townsend, Hu and Ashby 1980), a
sampling independence model which assumed thart features were reported if and only
if they were sampled, provided reasonable fits to the analyzed data. That is, it was
not necessary to assume that any alternative other than what was sampled was let into
the candidate set from which the response was made. Thus, if | was sampled, then ‘
was the response made, and so on.

In fitting the entire confusion matrix, it was found that this same assumption of
direct report again provided reasonably good fits to the data and thus it forms the
basis of the models we considered below. It should be mentioned that after the direct
report models were analyzed a great many other models which included a biased decision
stage were tested. None performed nearly as well as the models developed below,
so they have been excluded from consideration. (However, a particular example will
be mentioned later.) This strong assumption of direct report formed the basis of the
primary model tested against the entire data set which, for obvious reasons, we call
the ‘independent direct report model’ (henceforth referred to as the IDR model).

More formally the IDR model is characterized by assumptions (1), (2), (3), and (4).
Whether or not assumption (5) holds apparently depends on the specific stimuli em-
ployed so models that do or do not assume that a feature has the same sampling probabil-
ity in different stimuli will be analyzed. No previous results with which we are familiar
support assumption (6) so that different features may have distinct sampling probabili-
ties. Assumption (7) is tested in our analyses.

Further, the IDR mcdel thus generated will be tested against a sampling dependent
model, hereafter called the DDR (dependent direct report) model. Because this model
has quite a few parameters, it was necessary to require assumption (5), across-stimulus
invariance. It is important to note that the present IDR model assumes that the sampling
of ghost features is also independent, as did the models of Townsend and Ashby (1976).
Similarly, the DDR model assumes dependence of both ghost and real features.

The next five definitions give explicit form to the tested models.

Definition 1 (Stimulus)
Define the stimulus presented as Sy/Sy where Sy; and Sy are variables of the for

V, vertical present H, horizontal present
Sy = Sgr =

\_/, vertical absent H, horizontal absent

A line above Sy or Sy indicates the opposite ‘value’, where ‘value’ is defined by presence
or absence of the feature. Thus, Sy/Sy = VH indicates that the vertical line was not pres-

ent in the stimulus but the horizontal line was.

Definition 2 (Sample)
Define the sampled set of features as sysy where sy and sy are variables of the form

v, vertical present h, horizontal present
Sy = SH = = .
v, vertical absent h, horizontal absent
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A line above sy or syy indicates the oposite ‘value’, where ‘value’ is defined as presence

or absence.
As an example, sysgy = vh indicates both a vertical as well as a horizontal line were

sampled, without reference to whether or not they were actually contained in the sum-

ulus.
The next definition gives the general form of the sampling probability.

Definition 3 (Sampling Probability)
The probability that sy/sp is sampled given the presentation of stimulus Sy/Syy is written
P(SvSH[SvSH).
An example for this definition would be P(vhiVH) which is the probability that the
vertical line was correctly sampled and the horizontal line was correctly not sampled.
We are now in a position to define the two major models investigated in this study.

Definition 4 (IDR Model: Assumes sampling independence)

a. With Across-Stimulus Variability
P(SVSH!SVSH) = p(SV[SVSH) X P(SH|SVSH)

b. With Across-Stimulus Invariance
P(sysylSySy) = pisyISy) X p(sylSy)
Thart is,
p(syISySip) = p(syISySp) = plsyISy) and psylSySpp) = pGsyiSySy) = p(sy/Sp)-
The interpretion of part (b) of Def. 4 is that the probability of sampling the vertical or
horizontal line, whether perceived as a ghost or real feature, is the same whether the other

feature is or is not present.
In line with the IDR model with across-stimulus variability of sampling probabilities,

the example below Def. 3 would be expressed as
P(vh|VH) = p(vIVH) x p(hIVH) = p(viVH) x [1 = p(hiVED)].

The differentiating factor between the previous model type and the dependence direct
report model (DDR model) is that the joint probabilities of feature sampling must be in-
corporated inte the formulae. This can be done using one conditional and one marginal
probability according to the well-known formula P(A & B) = P(A) x P(BJA), as the fol-
lowing definition will indicate. Thus, let A play the role of sy and B the role of sy. Con-
ditioning on the stimuli will remain the same.

Definition 5 (DDR Model: Assumes sampling dependence)

a. With Across-Stimulus Variability

P(SVSHLQ’VSH) = p(SHISVSH) X p(SVISH,SVSH)
b. With Across-Stimulus Invariance

P (SVSH l SVSH) =P (SHlsH) X p(SVI SH» SV)

p(SVISH,SVSH) = P(5V|5H'SV§H) = p(Sv|SH,Sv) and p(SHISVSH) = p(SHl§vSH) =

= p(syISy), in the case of across-stimulus invariance.
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Clearly, a positivc dependency implies p(sylsp,S vSy) > P(sylsp.SySy). a negative
dependency the reverse inequality and independence implies equality.

Experimental Method

Subjects

The 0s were four Purdue upper division majors in psychology with 20/20 vision.

Apparatus and Stimuli

A Gerbrands two-field tachistoscope (Model T-2b) was used to present the stimuli. The
operational stimulus features are shown in Figure 1 according to which type of block
they were presented in. G indicates a gap between the two lines in the stimulus and @ is
the symbol used to denote the blank display. Whenever the stimulus feature V was pre-
sented in the gap condition, it was displaced approximately 12.5 min to the left of its
position in the Connected blocks. Similarly, stimulus feature H was displaced 12.5 min
distance to the right in all Gap blocks. When both were presented, they were, of course,
separated by a ‘gap’ angle of 25 min. The length of each line also subtended an angle of
25 min.

Connected Dlock ’ ¢

VH v M Blank
Gap biock , Y
VMG vG MG Btank

A prestimulus fixation field was described by a set of four dots which were arranged as
the corners of a square with the stimulus in the center. The four dots were on the screen
at all times except during the brief intervals of stimulus presentation. The fixation field on
any one side subtended an angle of about 20 at Os eye. Luminance was maintained at 27.4
cd/m2. Responses were given verbally and were recorded by the E on recording sheets.

Procedure

The Gap and Connected conditions were presented in separate counterbalanced blocks,
generating 4 X 4 confusion matrices for cach 0 in each condition. The Os had five days of
practice and calibration for a total of five hours. Before the experiment proper began, stim-
ulus duration was set for each 0 individually so that the proportion correct was approxi-
mately 0.45. Twenty trials of practice preceded each of fifteen experimental sessions. Each
of the four stimuli was presented 10 times in each block of trials. There were thus 40 trials
per block and because each block was run once a day, there were 80 experimental trials per
session producing a total of 150 trials per stimulus per 0 over the course of the experiment.
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That is, each row in each of the two confusion matrices was based on 150 trials, for each 0.
The stimuli were randomized across trials within the foregoing constraints. 0s were instruc-
ted to report only the features they thought they had seen, to attempt to disregard and not
to report any gaps.

Results: Basic Model Tests and Perceptibility Analyses

We are interested in the individual processes, of course, so Tab. 1 shows the 4 X 4 con-
fusion matrices for each 0 for the Gap and Connected conditions as well as group averages.
The theoretical entries will be explained shortly.

It can be seen that there was a tendency for accuracy (represented by diagonal entries)
to be somewhat greater for VH p(vh|VH) in the Connected condition over the Gap condi-
tion, but the reverse was true in the case of V. The H and @ stimuli did not evidence a
strong difference in accuracy in the two spacing conditions. Further, the estimated prob-
ability correct, averaged across stimuli and 0s was the same for the Connected and Gap
conditions (Ave f’(Cor) = 0.54). Also, the H stimulus was always more accurately reported
than the V stimulus.

The Gap and Connected conditions were analyzed separately. The IDR and DDR mod-
els were fit to the individual confusion matrices with one version of cach assuming across-
stimulus invariance and one version assuming across-stimulus variability of feature sampling
probabilities.

We can, of course, estimate the models’ parameters and simultaneously test the models
using the now classic Chandler (1965) x? minimization program. Moreover, if one model
is 2 nested case of another, then the difference of the two fitted x?’s is again approximate-
ly x? distributed with df given by the difference in dfs between the less and more general
models. Thus, assuming across-stimulus invariance, the IDR model is 2 nested case of DDR.
Similarly, assuming independence, the across-stimulus invariant model is a nested case of
the across-stimulus variability model. The nested tests reported below were all carried out
at the individual 0 level.

Within the Connected condition, the IDR model with across-stimulus variability was not
significantly better than IDR with across-stimulus invariance for any of the 0s. (According
to the nested x? test given above, XZO_OS(df) = )(20_05(4) = 9.5, where df = 4 is the differ-
ence in degrees of freedom in the two models.) Therefore, the IDR version with across-
stimulus invariance is the preferred model. Next, this model is also a nested case of the
DDR model with across-stimulus invariance, so may be statistically tested against it. Three
0s evidenced no significant difference at 0.05 level (x%( o5(2) = 6.0), but 0, showed signif-
icance at about the 0.01 level. In addition, in the original x-’- tests of the models, the IDR
model with across-stimulus invariance fit zll of the Os reasonably well at the 0.05 level (0,
was marginally significant with a x2 = 15.7 vs the significance criterion x? 95(8) = 15.5).

The best ficting IDR model in the Gap condition required across-stimulus variability
(only one 0 did not exhibit a significant difference (x20.05(4) = 9.5) in che nested zest).
Because the DDR mode! could only be employed with across-stimulus invariance, a nested
test against across-stimulus variability is not permitted. In the separate model fits in this
condition, cach model (IDR and DDR) failed to fit one of the Os at the 0.05 level (not the
same 0). At a qualitative level, it appeared that the IDR and DDR models fitted one 0
somewhat better than the other model did, with the other two Os being fitted about equal-
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ly well by either model. Thus, one cannot decisively falsify the DDR mcdel in this condi-
tion. However, overall, the most parsimonious model for the entire corpus of data would
be the IDR model, invested with across-stimulus invariance to predict the Connected data,
but requiring distinct sampling probabilities with different stimuli in the Gap condition.
The predictions of the IDR model with across-stimulus invariance in the Connected condi-
tion and across-stimulus variability for the Gap condition are shown in Table 1. Its parame-
ter estimates and X2 values are given in Table 2. As can be seen in those tables, the fits ap-
pear to be in good agreement with the data. There seems to have been a discernible depen-
dence for one 0 in the Connected condition and a different 0 in the Gap condition, al-
though statistical sampling error may have played a role there.

The important question, however, is not whether no dependencies art all exist in the
sampling process, but rather: 1) whether independence provides a reasonable first approxi-
mation to the data, and 2) how it continues to hold or fails to hold under varying stimulus
and contextual conditions. The first seems to be true in the present experiment. With re-
gard to the second question, we need to draw on other experimental results, which we will
do below. But first let us briefly consider some potential conclusions to be drawn from Ta-
bles 1 and 2.

From Table 1 it can be seen that there was a slight tendency for the models to overpre-
dict probability correct, the only observer-consistent exception being the VH stimulus in
the Gap condition. Whether these minor effects are due to some real second-order difficul-
ties in the models or only to statistical error is not known at the present.

From Table 2 it is apparent that in the Gap condition, sampling probabilities tend to be
higher in some conditions than others. However, the estimated ‘real’ and ‘ghost’ feature
sampling probabilities correspond respectively to hit and false alarm frequencies. There-
fore, according to our theoretical orientation, these may be used to calculate d” and f val-
ues. The assumption of independent channels for the two features makes these computa-
tions meaningful. Table 3 reports these, and it can be verified that in several cases the sam-
pling probabilities are higher in one condition than another but with the respective d’s
reversed.

Without verbally tracing all the pertinent comparisons in Table 2, the major finding
with respect to feature perceptibility as reflected in d’ are as follows. [n the Connected
condition, the horizontal feature was more perceptible than the vertical feature. In the
Gap condition, perceptibility of the vertical feature was improved to the extent thar when
both features were present in the stimulus, it was seen even better than the horizontal fea-
ture. If only one feature was present in the stimulus, the vertical and horizontal features
were perceived about equally well. However, in the Gap condition even the horizontal fea-
ture was perceived slightly better with the vertical feature present than when it was absent.
These findings can be explained if attention was greater on the vertical feature in the Gap
condition and on the horizontal feature in the Connected condition. In addition, there
appears to have been a slight Gestalt influence operating in the Gap condition which im-
proved performance when both features were present. We do not know at this point what
could have caused such an effect in the Gap but not in the Connected condition. It is cru-
cial to note, though, that such an effect does not imply the presence of sampling depen-
dencies. Incidentally, note that the estimated sampling probabilities decisively falsify
assumption (7), the high-threshold axiom.
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Discussion

Our data analyses definitely rejected the high threshold postulate (e.g., note the ghost fea-
ture sampling probabilities in Table 2). Further, we found that the assumption of a guess-
ing process in conjunction with this independence model could be soundly rejected. In
fact, a general model which did allow ghost feature sampling as well as an ensuing biased
decision process (not mentioned previously) performed extremely poorly (x? 2 155). It
is impossible for the reduction in parameters caused by imposing a high threshold assump-
tion on the foregoing general model to reduce the X2 to a reasonable number. Thus, a low
threshold model assuming direct report of the sampled fearures appears to be the preferrec
explanation for the present data.

On the other hand, the success of the high threshold models in Wandmacher's (1976)
study is somewhat troubling. It is true that the processing by 0s may be somewhat differ-
ent depending on exact circumstances, even in experiments in which the stimuli are suffi-
ciently simple to facilitate sampling independence. Nevertheless, it is difficult to conceive
how ghost features could have been entirely eliminated in the Wandmacher (1976) design.
If stimulus intensities were quite high, resulting in high accuracy, then 0s could probably
discriminate and therefore reject weak ghost features. However, the accuracies of Wand-
macher’s 0s were set between 0.25 and 0.50 prebability correct, a low to moderate accu-
racy level. Of course, the absence of blank trials makes it difficult to critically evaluate the
high threshold assumption, especially when combined with a biased decision process sub-
sequent to the sampling process.

Before a consideration of experiments that have produced strong dependencies, a very
recent study by Wandmacher, Kammerer, and Glowalla (1980) should be mentioned.
Across-stimulus invariance and sampling independence were studied with across-stimulus
variability being rejected and sampling independence supported. The (high threshold)
assumption that no ghost features occurred could not be tested. The stimuli in their
second experiment contained from 2 to 4 connected features. Thus, the results are
basically compatible with Wandmacher (1976) and the present work.

Of studies arguing against sampling independence, at least in a direct report sense,
perhaps the earliest was Hubert (1972). However, only children were run as observers
and only group averages were analyzed so the results are not really compatible to the
other work discussed here.

The previously noted Townsend and Ashby (1976) study found dependencies that
were quite larger. Table 4a exhibits the estimated joint probabilities and the indepen-
dence predictions (the product of the estimated marginal probabilities) of report for
a horizontal and vertical feature from that study. The features employed in Table 4a
could not be used in Table 4b because they appeared in every letter used in the earlier
study. However, Table 4b reproduces the estimated probabilities for an analogous
feature-pair from the present study for purposes of comparison. Both tables also exhibit
the differences between predicted and observed values as well as a Z-test on those dif-
ferences. It is noteworthy that not only are the Townsend and Ashby differences very
significant but, more importantly, are larger than those of the present study even though
there were almost three times as many trials in the earlier work (resulting in a smaller

standard error).
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Table 4. Example comparison of independence test from Townsend and Ashby data (1976)
and the present experiment

Z-test
R (after arcsine)
Observer Cond. P(D) p(rxp(l) Diff. transformation
o’ FH 212 337 =125 -4.08%**
1 AE .350 371 -.021 - .62
o’ FH .102 198 -.096 -3.91%**
2 AE 091 170 -.079 SR VAR
o’ FH 212 333 -.121 -3.91
3 AE .355 413 -.058 - 1,74
N =420
* significant at a = .10 (two-tailed)
*** significant at a = .001 (two-tailed)
b
o CONN 189 195 -.006 - .13
1 GAP .165 .201 -.036 - 81
0 CONN .560 557 .003 .05
2 GAP 517 536 -.019 - .33
o CONN 333 311 .022 41
3 GAP 263 281 -.018 - .35
o CONN .260 239 021 42
4 GAP .187 .189 -.002 - .04

N =150

All Z-tests were nonsignificant at the « = .30 level (two-tailed)

Note. The Townsend and Ashby data used in Table 4a are based on feature reports following
stimuli which included both these features, as are the data from the present experiment

The Os in the Townsend and Ashby (1976) experiment were required to make a
letter response as well as the feature report. Analyses revealed that they often respond-
ed with letter alternatives that might have led to the fezture sample by losing features
but virtually never with alternatives which would have had to gain features (i.e., even
though they often reported ghost features, they tended to discount this possibility
in their letter responses). This decision process could have led to a lack of independence
if Os suppressed feature samples reflecting impossible (in their minds) combinations.
Thus, if this were true, a combination like _!should rarely have been reported since no
letters contained those features, and therefore could not have led to that sample by
feature loss. This, in fact, occurred, so that factor accounts for at least some of the
dependencies. However, this effect cannot predict the dependencies in such feature
pairs as those in Table 4a. Nevertheless, an cxperimental paradigm that employed all
feature combinations plus a blank feature in order to generate a more complex set of
stimuli than Wandmacher (1976) or the present study used would certainly be of inter-
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est, because no configurations would be impossible, either from a lost real feature or from
a gained ghost feature point of view.

Townsend and Hu (1980) recently reported a confusion experiment meeting these
conditions, based on non-letter stimuli composed of all possible combinations of three
straight line features and one curved line, plus the blank stimulus. The stimuli were
thus about as complex as real letters but without being overlearned as symbols. Very
strong dependencies were found, interestingly, of a positive nature. That is, if one
fearure were sampled, then it was more likely that another would also be sampled. This
result is contrary to what would be expected from lateral interference. Townsend and
Ashby (1976) had found both positive as well as negative dependencies, possibly re-
flecting the decision strategy mentioned above as well as positive effects of the type
found in the latter study.

It is of concern, however, that the particular stimuli of Wandmacher, Kammerer,
and Glowalla (1980) which were multi-featured did not produce sampling dependencies.
The reason for this is unclear. A model of the type that fitted their dara performed
very poorly with our data. Obviously, more work is in order with regard to ascertain-
ing the reasons for the differences in findings as well as determining the cause of the
positive sampling dependencies in the Townsend and Hu data. What seems to be
emerging in a general way, however, is that feature sampling independence is an ac-
ceptable hypothesis in sufficiently restricted simple stimulus-confusion experiments,
but may easily be lost in mcre complex situations. Finally, across-stimulus invariance
of feature sampling probabilities appears to be viable only in a highly homogeneous

set of stimuli.
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