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Mean interaction contrast has been shown to be a beneficial statistic for testing
between serial and paraliel processes (e.g. Schweickert, 1978; Sternberg. 1969:
Townsend, 1984). The present theoretical note investigates a conjecture of Egeth &
Dagenbach (1991) that the mean interaction contrast is largest when the parallel
processcs are each deterministic, that is posscessing zero variance. We show that their
conjecture is true in certain situations but not in others. We further demonstrate that
the magnitude of mean interaction contrast may be a non-monotonic function of
processing time variance. Finally, implications for experimentation are pointed out.

1. Introduction

The investigation of simple mental architecture employing reaction time as a dependent
variable reached a crescendo during the 1960s. Of particular interest was an important question
dating back to the 19th century (e.g. Chnstic & Luce, 1956; Hamilton. 1859): Is the rapid
searching of short-term memory or brief visual displays a parallel or serial operation (e.g.
Sternberg, 1966; also see many references cited by Townsend & Ashby, 1983)?7 However,
careful mathematical work was soon to demonstrate that within the common experimental
paradigms, parallel and serial modcls were capable of mimicking one another’s behaviour in a
way that made testing the parallel-scrial issue within those paradigms difficult to impossible
(Atkmson, Holmgren & Juola, 1969 Townsend, 1969, 1972, 1976; Vorberg, 1977).

Over the intervening years, a number of experimental methods have appeared, mostly
derived through mathematical exploration, capable ot separating large classes of serial versus
parallel models (summarized by Townsend, 1990a; sce also Townsend & Ashby, 1983). One
highly promising branch of rescarch was evolved from the additive factor method proposed by
Sternberg (1969). The idea was that two serially arranged subsystems (subprocesses, etc.), with
no overlap in processing durations, would contribute i an additive fashion to the reaction time.
Hence, if experimental factors could be found that sclectively influence these separate
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subsystems, then the experimenter could predict a combined additive effect. That is, a zero
factorial interaction should be found. If a significant interaction was discovered, then the
proposed strategy was to conclude that sclective influence failed, or that in actuality, only a
single subsystem existed rather than two.

With regard to the method as originally put forth, detailed analyscs, critiques, reviews and
rigorous mathematical underpinnings have been contributed over the invervening ycars by a
number of writers (e.g. Pachella, 1974; Picters, 1983; Taylor, 1976; Theios, 1973; Townsend &
Ashby, 1983, Chapter 12). About a decade later, investigators began to extend the theoretical
framework under which factorial interactions, and the lack thercof, could pinpoint the type of
mental architccture responsible for reaction time results in specific psychological tasks (Ashby,
1982; Ashby & Townsend, 1980; McClelland, 1979; Piotrowski, 1983; Schweickert, 1978,
1982, 1983; Townsend & Ashby, 1983; Townsend & Piotrowski, 1981). Schweickert and
Townsend have recently developed a general stochastic theory of factorial interactions
applicable to a wide variety of mental architectures describable as directed graphs
(popularly known as PERT networks) with exhaustive processing at cach separate node
(Schweickert & Townsend, 1989; Townsend & Schweickert, 1989). The exhaustive assump-
tion is weakened in recent developments by Nozawa (1989), Schweickert & Wang (1993),
Townsend & Nozawa (1988) and Townsend & Nozawa (1995).

This growing body of knowledge has expanded the purview of the original methods so much
that we have rccently suggested the rubric ‘systems factorial technology’ to represent the
present much enlarged theory and implied mcthodology as well as to encompass future
developments (see e.g. Townsend & Nozawa, 1996; Townsend & Thomas, 1994). Fisher and
Goldstein have also made important contributions to this enterprise (e.g. Fisher & Goldstein,
1983: Goldstein & Fisher, 1991, 1992). In the case of parallel processing, it turned out that
parallel exhaustive processes predict an underadditive interaction whereas the minimum time
of two parallel processcs, conventionally referred to as a ‘horse race” model, predicts an
overadditive interaction (c.g. Ligeth & Dagenbach, 1991; Schweickert & Wang, 1993;
Townsend & Nozawa, 1988, 1996). Related theoretical work on parallel race modcls has
been published by Colonius (1990) (see that paper and Townsend & Nozawa, 1995, for further
citations).

Now, Egeth & Dagenbach (1991) suggest through intuitive reasoning that completely
deterministic parallel processes will produce a maximum contrast interaction effect. That is,
when any variance is attached to the parallel processes, the interaction contrast will be reduced.
Of course, to keep matters ‘fair,” the means for the various experimental conditions should be
kept constant. If the hypothesis were truc, it would also be of interest to inquire whether for any
distributions and factorial effects leaving the means invariant, the interactions must mono-
tonically decrease toward zero or some other limit as the variance continues to increase.

In the present note we prove that the first hypothesis is sometimes true, but only for certain
‘speeds’ of the separate channels. There are situations in which it fails. That 1S, 1N SOMeE cases,
the interaction contrast is maximal when the variance is zero, but in others the contrast s larger
for the stochastic model. Furthermore, there is a duality between the mean contrast of the
minimum time random variable and that of the maximum time random variable (¢.g. Townsend
& Nozawa, 1995). Because of this duality it follows immediately that the absolute value of the
mean contrast for the maximum is in the same direction as that for the minimum. Finally we
show that there is no necessary relationship between the magnitude of the interaction contrast
and the size of the variance. We will end the paper with remarks concerning the implications.
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2. Theory

Consider a parallel model based on independent channels or processes, named C, and C,.. For
instance, two parallel and independent counters, the first of which reaches a pre-set criterion
setting off a detection response, would meet these specifications (c.g. Colonius, 1990;
Townsend & Ashby, 1983, ch. 9). We assume that sclective influence acts through the effect
of an experimental factor ordering the cumulative distribution functions on processing times
associated with each specific subprocess (Townsend, 1990h; Townsend & Ashby, 1983, pp.
280ff: Townsend & Schweickert, 1989). We assume the distribution functions are continuous
on their domain of support, although that assumption could be casily weakened. The foregoing
implies nonzero variance. We also wish to assume that the variances are finite.

It is often more convenient to usc the survivor function, defined as one minus the
distribution function, rather than the distribution function itself (F(¢)). Obviously, an ordering
in the distribution function causes the reverse ordering in the accompanying survivor
functions. Let S(r) = 1 — F(¢) refer then, to the survivor function. Call the experimental
factors X and Yand let one level of the factors be dubbed *s” for slow and the other “f” for fast.
Then by hypothesis, Si(r) < Si(¢) for all >0 and similarly for the distribution functions
associated with channel C,. and factor Y. Also, assume that there exists an interval (a, b) where
the inequality is strict in both cases.

It is also assumed that the processing on the two channels is stochastically independent.
Thesc assumptions then imply that the survivor function for the minimum (race winner)
channel time for, say, the X = slow, ¥ = fast conditions, is just Sys(#)Sy¢(t) for any positive
value of . The mean (minimum) processing time is easily found to be

o0
E(RT; sf;min) = E[min(Ty,. Typ)] = ] Sy ()Syy dt.
0

With the same assumptions the mean (maximum) processing time for the parallel exhaustive
process is

E(RT; sfymax) = E[max(Tyy, Tyo)] = [ [1 = Fxo(0Fye(1)] dr
0

(seec e.g. Luce, 1986 or Townsend & Ashby, 1983).

Letting RT be the reaction time random variable and shortening, say, £(RT; sf) to Mg for
the minimum and N, for the maximum, the mean interaction contrast for the minimum is
defined as

C(\”“)”) — M.\'s - Ms!‘ - Mt'g + Mff,

whereas ss refers to the X = slow, Y = slow condition and so on (e.g. Townsend, 1984;
Townsend & Ashby, 1983, Chapter 12; Dzhafarov, 1993). The formula for the maximum 1s
obvious. Now, it is typically necessary to append a residual (carly sensory, motor, ctc.) time
random variable to the processing time random variable to produce the overall reaction time.
However, if, as is usually assumed, the residual variable is independent and unattected by the
processing time variables, the above contrast formula can be rewritten in terms of the paralicl
processing time variables, convolved with the residual term (see Townsend & Nozawa, 1988,
1995, for a substantial generalization and Dzhafarov, 1992 for an alternative conception of
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residual times). Therefore, the residual variable may be neglected without affecting the
generality of the present results.

Under the postulated conditions, we sce that the mean interaction contrast for the race model
is

CE:’],")]’)) = Mg — Myr — Mg+ My
e
[ Sxe()Sye(r) dr

0

oo O oC
= | Sys()Sys(0) dt — | Sxo(O)Sye(0) dt — [ Sye(0)Sys(1) dt +
0 0 0

oo

= [ [Sxs(t) = Sxr(D][Sys(r) = Sye(n)] dt, (1)
0

and for the exhaustive model

(max)
C(X‘y) = Ny — Ny — Ny + Nir

T = FrOF (0 dt — | [1 = Fro()Fve(0)] dr

0 0

[ = FeFyo0) e+ [ [1 = Fye(0)Fye(n)] de
0

N
[Ser() — Sis(Sya() — Sye(0)] db. )

I
0
J

Notice that the contrast in the latter case is just the negative of that in the former. This is a
version of the duality mentioned earlier. How shall we comparc this result with the
deterministic case, where the variances are all zero? To be interesting, the means should be
kept constant, as suggested by Egeth & Dagenbach (1991). That is, the means in the stochastic
case (non-zero variance) should be the same as the deterministic times (zero variance). Write
the stochastic (non-degenerate) individual means t;;, where i is X or Yand j is the level of the
factor. Now, the mean finishing time for the minimum time modc! in the deterministic case 1s
the time of the faster channel under all conditions. Clearly, which time enters into the
deterministic formula for contrast depends on the relative ordering of the fixed times. The
derivatives differ trivially depending on that order, so we perform only one in detail. We will
prove it with the ordering associated with Fig. 1, with the other cases being handled in like
manner (see below for an exact description for the model associated with Fig. 1). Let
Ly < tix) < Hxs) < ly.w. It is then casily seen that the minimum time contrast in the
deterministic race scenario can be expressed as

~(min)

k/.(\")r' - Mss - Msf - Mfs + Mﬂ‘
=y —lyg —lygtlyg
=ty —txr =0

For the parallel exhaustive process the contrast can be written as
W{max)
VY = N — Nyp — N+ Ny

=y —lys —lys+Ivy

=ty —1Iys =0
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f] fa

a a+b a+2b

Figure 1. Uniform distributions with means yp =3Qa+b), 1, = %(2a + 3b) and variances
2= p*/12.

Notice that, as cxpected, the contrast for the maximum is again, just as in the stochastic case,
the negative of that for the minimum.

We are now in a position to show that the contrast for the nondegenerate stochastic model is
greater than that for the deterministic model for this ordering. The key to the proof is to note
that the deterministic times, for example 7,x ) and #x_p, can be written in terms of the stochastic
distributions, since the quantity represented by the mean is not changed, and recalling that
the individual channel means of the stochastic case (which we notate as j) must be equal to
the fixed individual ‘means’ of the deterministic case. Hence fix 5y = [y ), lx.6) = Hix )
whereas remembering that the means can be expressed as an integral of the survivor functions
we find that

oc
Ky gy = [ Sye(t) dt
0
and so on. Thus, with

[ )
fixsy =l = ’ [Sys(f) = Syr(6)] dr
0

the appropriate comparison for the race model leads to the inequality

0< )[ [Sxs(0) = See(DISy () — Sye(N] dr =< E [Sxs(r) — Sye(n)] dr
and for the exhaustive model leads to the inequality

0> ! [Sxe(t) — SesD[Sys(r) — Sye(n)] dt = ] [Sxr(r) — Sys()] dr,

since letting 0 < Syg(¢) — Sy(r) < 1 forallr > 0 the stochastic side 1s always less than or equal
to the deterministic side m absolute value. This proves part (A) of Proposition 2.1, below.
As the reader may ascertain, there are only two other nontrivial permutations to investigate.
The firstis iy ;) < foviry < fiy. < Ly and the second 1s Ly ) < 1y o) < fx. ) < Ly Using
similar procedures as those described above we may complcte the proofs tor Proposition 2. 1.
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Keep in mind that what holds for the contrast on minimum time holds for the maximum time in
absolute value. Hence, we provide proofs only for the minimum cases.

Proposition 2.1  The relationship between the stochastic versus deterministic models
is given for each of the three orders as follows:

(A) fiy) <t < Ly < L Absolute value of the deterministic contrast >
stochastic contrast.

(B) tyv.r) < txony < fiys) < lxs)! The order of the (absolute value of the) stochastic
versus deterministic contrast depends on the particulars.

(C) tiriy < fivs) < tey < Lyt Absolute value of the  stochastic contrast >
determinstic contrast = 0.

Proof.  (A) Completed in text.

(B) Case (i): Deterministic contrast is larger in absolute value than stochastic contrast. Let
all distributions be exponential: 4,¢”* where 2; = X; or Y;and i = s or {. The comparison is
then

1 1 1 1 1 I
— — + Y% .
Xs + Ys /Ys + Yf‘ Xf + Ys /\,f’ + Yf Ys X f

Now let ¥; = 1000, Xy = 900, Y, = 100, X; = 99, to prove (i). Casc (i1): Stochastic is larger
in absolute value than deterministic. Again use cxponential model, but now with parameters
— 1000, X; = 500, Y, = 450, X, = 1 to reverse the inequality.
(C) From equation (1) it is apparent that the stochastic side is always greater than 0.
However, it is cqually clear that the deterministic contrast from the minimum time or the
maximum time is simply 0. U

A related question ensuing from the Egeth & Dagenbach (1991) conjecture is whether the
mean contrast must be a monotonic function of variance. This is not so, as expressed in
Proposition 2.2.

Proposition 2.2.  There exist probability distributions whose associated contrast
functions are nonmonotonic functions of variance.

Proof.  Consider, as onc example, uniform distributions with means i and p for the fast
condition and the slow condition, respectively, with g < g and variances ¢® for both
conditions. More concretely, let the uniform distribution for the fast condition be defined on
the closed interval {a, @ + b}, a > 0. b > 0, i.c. with density function

0 0<r<u
fro= a<t<a+b

0 at+b<t,
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mean pp = 1(2a +b) and variance ¢ = h*/12. The uniform distribution for the slow
condition 1s defined

0 O<t<a+b

. 1
Js = 5 a+b<t<a+2b
0 a-+2h <1t

with mean ;= 5 L (2a + 3b) and variance o = h*/12. Figure | shows this situation. Since the
contrast is defined as C, = [(Ss(¢) — S¢(1) ))* dr we need to determine the survivor functions S¢
and S, for the fast and slow conditions, respectively; that 1s

] 0<t<ua

[ —ua
| —Fr =S8 = 1—77 a<t<a+b

)

0 at+b <t
and
| O<t<a+b
t—a-1
| —Fy =8 = 1—(; 7 a+b<t<a+?2b.
)
0 a+2b <t

According to the different intervals on which the distributions are defined, we determine the
contrast piecewise, where Cjy = Cp 4- Cy2 + ()3 and the indices 1, 2 and 3 refer to different
intervals, 1.e.

Cor =[(1 = 1) dr =0 O<t<a
0

and

2
Co=Cpi +Coo +Cpy = ?b 0<t<a+?2b. (3)

Consider now the casc where we have again uniform distributions for the fast and slow
conditions with exactly the same means as before but with a smaller variance for both
conditions, i.e. the uniform distribution for the fast condition is now defined on the closed
interval [a + 1 54, a - 1(1 + b] dnd the uniform distribution for the slow condition 1s defined on
the interval [a + a + h,a— 3a -2h], b > « with respective density functions

0 0<t < (1+2u
: l
Jr= — - a -+ u <P <a—s3 a +h

() a - ;(1—%/)<r
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fl f:

a a+b a+2b

a+%a a—-%a+b a+%a+b a—%a+2b

Figure 2. Uniform distributions with means llf:%(2u+b).,us:%(2(1—%3/?) and varlances

6’ = (b —a)/12.
and
0 ()<t<a+%a+b
= o a ;—a—}—h <t 5(1—%51 +2b

0 a— %a +-2b < 1.

Figure 2 illustrates these densities. The survivor functions for both conditions in this situation

are, respectively

| ()<(<a+%a
1
: . t—a—=3a
L =Fr=S={1l-wr—?" atla<i<a—ja+th
b—a 2 2
0 (1—;a+h<:r
and
1 O<1<a+%u+/;
1
: y t—a—sa—b
Polo=>5 941 Ty o— a4 +%U +bh<t<a-ta+2b
) — A - .

0 (1f%(1+2/> < .
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Again the contrast 1s split up into three parts:

at La
1
Cor —= (! (1 - 1)2 dt =0 0 <t <a+ S
c a guth | | f—a—1a 2d bh—ua { 1 | ny
— . B | = — - a - - <1 < a-——-—d )
p2 'l, b—ua 3 A
atsa
a4 2h {—a—‘a—h7" h—ua 1 l
Cp3 = J I — R L = a+-—a+b<t<a—-a+2b.
' h--a 3 2 2
a+sa tb
The contrast for the entire domain is
. - . . 2 ' 1 o)
("P:Cpl+(pl+cpf\:§(l’4”) ()§l§(1-§(1'+'1_/7. (4)

S

Comparing equations (3) (4). %(h —a) <= gb shows that the contrast decreases when the
variance decreases, the means remaining the same in both situations.

Finally consider the situation where we have uniform distributions for the fast and slow
conditions with the same means as before but now with a large variance for both conditions, i.¢.
the uniform distribution for the fast condition is now defined on the closed interval [0, 2a + b]
and the uniform distribution for the slow condition is defined on the closed interval

[h, 2a + 2b]. The density distributions in this case are

0 t <0
: l .
// = 2({ +7) () << 2a + h

0 t>2a+b

and
0 0<t<bh
|
N - 5
fo = i h b <t<2a+2b

0 t > 2a+2h

: : . Qutby L ‘ .
both having variances 6° = 5 Figure 3 shows this situation compared with the first
one. -

For the respective survivor functions we get
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f! f:

// N

a b a+b 2a+b a+2b 2a + 2b

Figure 3. Uniform distributions with means g = $(2a + b). ;i = 5(2a +3h) and variance
o’ = (2a + b)*/12.

and
1 0<t<b
1 —Fy =38 = —[Vb b<t<2a-2b
) ’ 2a + b
0 t > 2a+ 2b.
The contrast is
i 2b%(3a + t
Cp = Cpl -+ C‘pp_ +Cy = W),,(,WQA,A;) 0<t=<2a+2b (5)
3Q2a + by
with
b t 2 /'3
Cor = | [l — (1 *w»—)} dr = —% O0<t=<bh
0 2a+b 3(2a + b)Y
2(1}—/; [ — } 2 ) }2
Co= [ |1—-t (1222 ™ p<i<2a+b
b 2a +b 2a + b (2a +b)
2a42b o} 2 bl
Coy = | [1—— )} A= 0 2a+b <t<2a+2b.
2uth 2a +b 3Q2a 4 b)”

Comparing equations (3) and (5)
2 Cath) 2,
3 Qa+h)y 3
POa )
Qa b)Y
0 < d4a” + ab a, b >0

shows that the contrast increases as the variance decreases. (]



Variance and interaction contrast 221
3. Discussion

The present results are closely related to the experimental detection of factor interaction and
thus have a direct impact in the model testing arena.

Proposition 2.1 demonstrates that the Egeth & Dagenbach (1991) conjecture, that the
presence of variance always diminishes mean interaction contrast, is not universally true. It
holds for some orders of processing times and not for others. Proposition 2.2 indicates that the
size of mean contrast also may not be monotonically related to magnitude of variance.

Another point, emphasized by inspection of equations (1) and (2) is that the levels of
experimental factors should be selected so that the distributions are separated as far apart as
feasible. Obviously, a somewhat separatc point from the main goal of this paper, is that
extrancous variance should always be minimized, relative to the numerical mean interaction
contrast, in order to increase statistical power (cf. Townsend, 1984).
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