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Multialternative Decision Field Theory:
A Dynamic Connectionist Model of Decision Making

Robert M. Roe, Jerome R. Busemeyer, and James T. Townsend
Indiana University Bloomington

The authors interpret decision field theory (J. R. Busemeyer & J. T. Townsend, 1993) as a connectionist
network and extend it to accommodate multialternative preferential choice situations. This article shows
that the classic weighted additive utility model (see R. L. Keeney & H. Raiffa, 1976) and the classic
Thurstone preferential choice model (see L. L. Thurstone, 1959) are special cases of this new multialter-
native decision field theory (MDFT), which also can emulate the search process of the popular
elimination by aspects (EBA) model (see A. Tversky, 1969). The new theory is unique in its ability to
explain several central empirical results found in the multialternative preference literature with a common
set of principles. These empirical results include the similarity effect, the attraction effect, and the
compromise effect, and the complex interactions among these three effects. The dynamic nature of the
model also implies strong testable predictions concerning the moderating effect of time pressure on these

three effects.

Preferential choice is a complex topic that requires examination
from many different perspectives. Take, for example, the relatively
simple task of buying a new car. From one point of view, this is a
search problem in which a very large set of options is winnowed
down to a much smaller set of satisfactory options (Simon, 1955,
Tversky, 1972). From another point of view, this is an evaluation
problem requiring trade-offs among multiple conflicting attributes
such as safety, quality, performance, and cost (Keeney & Raiffa,
1976; Von Winterfeldt & Edwards, 1986). From a third point of
view, this is a discrimination problem in which the strengths of
competing candidates probabilistically compete for ultimate selec-
tion (De Soete, Feger, & Klauer, 1989; Thurstone, 1959).

This article presents a general decision theory that encompasses
all of these points of view within a single theoretical framework.
The present theory is an elaboration of an earlier theory known as
decision field theory (Busemeyer & Townsend, 1993), which is
based on the idea that information is sequentially sampled and
accumulated over time to make a decision. This basic idea forms
the foundation of a wide range of cognitive decision models,
including sensory detection (Smith, 1995), perceptual discrimina-
tion (Link, 1992), memory recognition (Ratcliff, 1978), conceptual
categorization (Ashby, 2000; Nosofsky & Palmeri, 1997), and
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multiattribute decision making (Aschenbrenner, Albert, & Schmal-
hofer, 1984). The present formulation also relates to previous
artificial neural network models of decision processes (Grossberg
& Gutowski, 1987; Leven & Levine, 1996; Usher & Zakay, 1993).
In particular, the principle of lateral inhibition (Grossberg, 1982;
McClelland & Rumelhart, 1981) is incorporated into the choice
process, and this principle performs a crucial part in explaining
paradoxical findings from the preferential choice literature.

Decision field theory was originally developed to explain choice
behavior for decision making under uncertainty by Busemeyer and
Townsend (1993). Later, Townsend and Busemeyer (1995) ex-
tended the theory to explain the relationships among choice, sell-
ing prices, and certainty equivalents. More recently, it was ex-
tended to account for multiattribute decision making by Diederich
(1997). However, these previous applications were limited to
binary choice situations; the present development extends the
theory to multiple (more than two) choice problems and offers
initial but critical probing of the theory’s ability to predict several
central findings in multialternative choice.

This article is organized as follows. The first section reviews the
central or pivotal empirical findings from the multialternative
choice literature. This includes (a) the similarity effect (Tversky,
1972) produced by adding a similar competing alternative to the
choice set, (b) the attraction effect (Huber, Payne, & Puto, 1982)
produced by édding a dominated alternative to the choice set, and
(c) the compromise effect (Simonson, 1989) produced by adding an

intermediate alternative to the choice set. Although specific alter-

native explanations have been proffered for each of these central
qualitative findings, this is the first attempt to account for them all
within a single unified theory. The next section presents the basic
ideas of multialternative decision field theory (MDFT). We show
how the classic multiattribute value model (Keeney & Raiffa,
1976; Von Winterfeldt & Edwards, 1986) and the classic prefer-
ential choice model (De Soete et al., 1989; Thurstone, 1959) can be
derived as special cases from MDFT under certain ideal conditions
and task constraints. The third section describes how MDFT ex-
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plains the similarity, attraction, and compromise effects as well as
their complex interactions, using a common set of principles and
parameters. The fourth section shows how the winnowing search
process of the elimination-by-aspects (EBA) model (Tversky,
1972) can be mimicked by alternative versions of MDFT. Finally,
in the last section, we compare the explanatory power of MDFT
with other preferential choice models.

Central Findings on Multialternative Preferential Choice
Basic Paradigm

Real life preferential choice problems normally entail a large
number of alternatives and attributes. For example, when buying a
new car, the buyer needs to compare a broad range of alternative
manufacturers and models on a wide variety of performance and
economic attributes. In contrast, laboratory experiments strive to
test basic theoretical principles by examining a small number of
choices that vary on only a few experimentally controlled at-
tributes. In this article, we use a simple laboratory example to
provide the background for clearly describing the central empirical
results. However, the empirical principles are potentially applica-
ble to the more complex real-life choices as well.

Consider the case of a new car purchase and suppose the choice
set has been reduced to a few cars, which differ primarily on only
two attributes, performance quality and driving economy. Figure 1
presents a graphical depiction of the problem and clearly illustrates
the three major findings.

Similarity Effect

One of the first important results to arise from studies of
preferential choice concerns the effect of adding a new competitive
option to a choice set that already contains two dissimilar options

Performance Quality

Driving Economy

Figure 1. A graphical depiction of the problem of choosing between car
options based on the two attributes of performance and economy. The
horizontal axis represents ‘the value of each car on the driving economy
attribute, and the vertical axis represents the value of each car on the
performance quality attribute. Each car is then represented as a point in this
two-dimensional space. For example, car A is high on quality and low on
economy, whereas car B is low on quality and high on economy. The
similarity, attraction, and compromise effects can be illustrated clearly
using this simple example.

(Sjoberg, 1977; Tversky, 1972). For example, suppose an industry
considers the effect of introducing a new competitive product S on
a market that already has two dissimilar competing products, A
and B. Furthermore, suppose the new product is highly similar to
product A and dissimilar to the other product B. The main finding
is that the introduction of the new competitive product to the
choice set reduces the probability of choosing similar products
more than dissimilar products (Sjoberg, 1977; Tversky, 1972). In
terms of market share, the new product steals more from similar
products. This effect has significant practical implications for
marketing and consumer research (Batsell & Polking, 1985; Bett-
man, Johnson, & Payne, 1991; Lehmann & Pan, 1994).

Our three-car example in Figure 1 shows a similar situation. The
three options are represented in a two-dimensional space of quality
and economy. Options A and B are located such that option A has
better quality but poorer economy than B, and option B has worse
quality but better economy than A. Suppose the high-quality car A
is slightly more popular than the economical car B in a binary
choice (say 55% favor A over B). If another high-quality car S is
introduced, then it steals choices away from the original high-
quality car A, evenly dividing the choices between A and S (27.5%
each). However, the choices favoring the economical car B remain
intact (45%), thus making it most popular in the trinary choice set.
In general, a similarity effect occurs whenever the following
reversal of choice probabilities is obtained (Sjoberg, 1977; Tver-
sky, 1972): Pr[A | {A, B}]1 > Pr{B | {A, B}]1 but Pr{A | {A, B, S}]
< Pr[B | {A, B, S}]. (Note: PrfA | {A, B, S}] denotes the
probability of choosing option A from the set containing A, B,
and S.)

The similarity effect produces violations of a preferential choice
property called independence from irrelevant alternatives. Accord-
ing to this property, if x and y are both elements of a choice set T,
which in turn is a subset of a larger choice set U, then Pr[x | 7] >
Pry | T] implies Pr[x | U] > Pr[y | U]. A large class of probabi-
listic choice models, known as simple scalable utility models, must
satisfy this property (Tversky, 1972). The simple scalable class
includes all models that assume that each alternative can be as-
signed a utility scale value, independent of composition of the
choice set, and choice probability is determined from the utilities
by the general formula Pr{x | T] = Flu(x), u(y), . . ., u(z)], where
F is an increasing function of the first variable and a decreasing
function of the all other variables. For example, Luce’s (1959)
well-known “ratio of strengths” choice model satisfies this prop-
erty. The similarity effect violates the independence between ir-
relevant alternatives property and rules out the entire class of
simple scalable choice models.

Attraction Effect

A second important finding from studies of preferential choice
is the effect of adding a new option that is dominated by one of the
other options in the original choice set (Huber, Payne, & Puto,
1982; Ratneshwar, Shocker, & Stewart, 1987; Simonson, 1989;
Wedell, 1991). For example, suppose an industry considers intro-
ducing a new product D on a market that already has two highly
dissimilar competitive products, A and B. Once again, the new
product D is designed to be highly similar to an older product A,
but in this case, A dominates D in the sense that A is better than
D on all the primary attributes. At the same time, D does not
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dominate B nor does B dominate D. In this case, D is called an
asymmetrically dominated decoy. The attraction effect refers to the
fact that the introduction of the new dominated product to a choice
set increases the probability of choosing the dominant product. In
terms of market share, the new product enhances the market share
of the product that dominates it. (Note that this is the opposite of
the similarity effect produced by a new competitive product.)

Figure 1 illustrates this choice situation for the car purchase
example. As before, car A is superior on quality, whereas car B is
superior on economy. Car D is now slightly inferior on both
quality and economy as compared with car A. The attraction effect
refers to the empirical finding that adding D to the choice set
increases the probability that option A is chosen: Pr[A | {A, B}1 <
Pr{A | {A, B, D}1.

The attraction effect produces a violation of a general principle
implied by a large class of random utility models called the
regularity principle (cf. Colonius, 1984; MacKay & Zinnes, 1995;
Marley, 1989). According to the regularity principle, for any
option x that is an element of set W, which is in turn a subset of set
U, x € W C U, the probability of choosing x from W must be
greater than or equal to choosing x from U, Pr[x; W] = Prfx; U].
In other words, the addition of option D to the set already con-
taining A and B should only decrease the probability that option A
will be chosen, not increase it. For example, the classic Thurstone
(1959) preferential choice model must satisfy regularity, and the
attraction effect rules out this entire class of models.

The regularity effect is rather robust. For example, Huber et al.
(1982) investigated a variety of different choice conditions pro-
ducing a wide range of binary choice probabilities. Adding the
dominated decoy (D) increased the probability of choosing the
dominant alternative (A) under all of these conditions. This in-
cludes (a) when A was chosen less frequently than B in a binary
choice, (b) when A and B were chosen equally often in a binary
choice, and (c) when A was chosen more frequently than B in a
binary choice.

Compromise Effect

A third important finding concerns the effect of adding a new
option that lies between two competing extreme options in the
original choice set (Simonson, 1989; Simonson & Tversky, 1992;
Tversky & Simonson, 1993). Suppose there are three equally
attractive products, A, B, and C, as indicated by their pairwise
preferences, but suppose two of the products, say A and B, are
_extremely different, and the third product is a compromise that lies
in between these two extremes. The compromise effect refers to
the empirical finding that when all three options are available for
choice, the compromise is chosen more frequently than either of
the extremes. Unlike the previous decoy effect, the attractiveness
of the compromise option is enhanced by introducing a new
competitive (as opposed to dominated) option.

Figure 1 illustrates this choice situation for the car purchase
example. As before, car A is superior on quality whereas car B is
superior on economy. Car C is a compromise lying in between
these two extremes—C is not as good as A on quality but better
than A on economy, while C is not as good as B on economy but
better than B on quality. The compromise effect refers to the
empirical finding that Pr[A | {A, B}] = Pr[A | {A, C}] = Pr[B |
{B, C}], but Pr[C | {A, B, C}] > Pr[A | {A, B, C}] and Pr[C | {A,

B, C}] > Pr[B | {A, B, C}]. In other words, the compromise is
enhanced when viewed within the context of the two extremes.
Furthermore, the effect is found even when the trinary choice set
is presented before the three binary comparisons (and thus the
result is not due to new information about options that changes the
perception of attribute space used to describe the options).

Previous Explanations

Tversky (1972) developed the EBA model to explain the simi-
larity effect. However, the EBA model also obeys the regularity
principle (see Tversky, 1972), and therefore it is ruled out by the
attraction effect. More recently, Tversky and Simonson (1993)
proposed a context-dependent advantage model to account for the
attraction and compromise effects. However, as proved in Appen-
dix A, the context-dependent advantage model cannot account for
the similarity effect. Taken together, these three central findings
continue to remain a deep puzzle for decision theorists. To date, no
single theoretical explanation has been brought forth to explain all
three within a common theory.

Multialternative Decision Field Theory

The basic intuition underlying decision field theory is that a
decision maker’s preference for each option evolves during delib-
eration by integrating a stream of comparisons of evaluations
among options on attributes over time. Consider, for example, the
car purchase decision discussed earlier. Initially, the decision
maker’s attention may focus on the most important attribute (e.g.,
quality) and some specific aspects (e.g., initial acceleration, con-
trol on turns, stability at high speeds, stopping power) of this
attribute are evaluated for a period of time. During this time
period, the evaluation of each option is compared with others and
these comparisons change the preferences up or down depending
on whether an option has an advantage or disadvantage on the
attended attribute. A few moments later, attention may switch to
another less important attribute (economy), and comparisons of
detailed aspects (e.g., price, gas efficiency, repair costs, reliability,
durability) related to this second attribute are added to the previous
preferences. Attention may then switch back to an earlier attribute
for additional comparisons, and these comparisons continue to
update the preferences for each option. Eventually a decision is
reached either by an externally imposed time constraint (e.g., the
car dealer presses for a final decision) or by a self-imposed
criterion (e.g., preference exceeds a threshold and the buyer an-
nounces a decision).

Multialternative Dynamic Decision Process

The decision process described above is an example of a large
class of decision models called sequential sampling models (Link
& Heath, 1975; Ratcliff, 1978; Vickers, 1979). Decision field
theory builds on this earlier theoretical work by extending the
application of these models to multialternative preferential choice
situations. The sequential sampling decision process described
above can be stated more formally, as follows.

Valences. At any moment in time, each alternative in the
choice set is associated with a valence value. The valence for
option i at time ¢, denoted v(r), represents the momentary advan-
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tage or disadvantage of option i when compared with other options
on some attribute under consideration. The ordered set of valences
for all the options forms a valence vector, denoted V(f). For
example, a choice among three alternatives {A, B, C} produces the
three-dimensional valence vector V(¢) = [vA(?), vg(f), ve(9)]'. This
valence vector is determined by three different components.

The first component of valence is the personal evaluation of
cach option on each attribute. In general, the value m; denotes the
subjective value of option i on attribute j. For example, consumer-
oriented magazines or Web pages provide the reader with large
matrices indicating the objective values of each option on a wide
variety of attributes. Using this objective information, the reader
can assess his or her personal or subjective evaluations (m,;s). The
general model can accommodate any number of evaluations. But
for the simplified car decision problem presented above, there are
only two primary attributes—economy and quality. The vector
Mg = [mug, mgg, Mmcgl’ represents the three evaluations for the
three cars on economy: If car A gets lower economy than car B,
then m, is assigned a lower scale value than mgg, so that m,p <
mgg. Similarly, define My, = [maq, Mg, Mool as a vector of
evaluations for the three cars on quality: If car A has higher quality
than car B, then m,, is a assigned a higher scale value than my,,
so that m, o > mgq. Concatenation of these two vectors forms a
3 X 2 value matrix, M = [Mg | Mg).

The second component of valence is the attention weight allo-
cated to each attribute at a particular moment in time. The mo-
mentary attention to attribute j is represented by an attention
weight, W), at time z. For example, consumer-oriented maga-
zines or Web pages facilitate evenhanded attention to a wide
variety of attributes, allowing the reader to rely on his or her own
judgments regarding the importance or relevance to the decision.
Magazine, television, or Web advertisements attempt to manipu-
late or draw the viewer’s attention to particular attributes that favor
the sponsor’s product. The general model can accommodate any
number of attributes, but for the simplified car purchase example,
there are only two attention weights, Wg(z) for economy, and W (9)
for quality. The attention weights vary from moment to moment
due to changes and fluctuations in attention to the attributes over
time. For example, at one moment in time, the decision maker may
focus on one attribute (e.g., acceleration), but at later moment,
attention may switch to another attribute (e.g., rising cost of gas).
In general, the attention weights change and fluctuate across time
according to a stationary process. For the present application, it is
sufficient to assume that attention shifts in an all-or-none manner
from one attribute at one moment, Wo(f) = 1, We(s) = 0, to
another attribute at another moment, Wo(r + 1) = 0, Wi(r +
1) = 1, with some fixed probabilities. The probability of attending
to the economic dimension is denoted wg, and the probability of
attending to the quality dimension is denoted wq. This implies an
exponential waiting time for attention to shift from one given
attribute to another.! The attention weights for all of the attributes
form a weight vector W(#). For the car purchase example with only
two attributes (quality and economy), the weight vector is a two-
dimensional vector W(t) = [We(t)Wq(9)]'.

The matrix product of weights and values, MW(¢), determines
the weighted value of each alternative at each time point. For
example, when choosing among three cars, the ith row of the
product MW(7) equals the weighted value of ith option: Wg(f)m g
+ Wo(Dm,q. At first glance, this looks like the classic weighted

utility model. However, unlike the classic weighted utility model
these weighted values are stochastic because of fluctuations in the
attention weights W(#) and Wq(2). A static version of this random
weight utility model was successfully used by Fischer, Jia, and
Luce (2000) to explain inconsistencies in ratings obtained from
multiattribute judgment research.

The third and final component used to determine the valences of
each option is the comparison process that contrasts the weighted
evaluations of each option. This comparison process is needed to
determine the relative advantage or disadvantage of each option on
the attribute being considered at that moment. In general, the
valence for each option is produced by contrasting the weighted
value of one alternative against the average of all the others. For
example, with three alternatives, {A, B, C}, the valence for option
A is computed by the contrast v,(f) = Wp(map + Wo(Omag —
[(We(®mge + Wo(Ompo) + (We(meg + Wo(Ome)V2. This
comparison process also can be represented by a matrix operation
by defining a contrast matrix:

1 -2 =1
C=1{-— 1o 1 -1
- -1 1

Using this matrix definition, the valence vector is formed by the
matrix product

V() = CMW(5). (1a)

Each row of the matrix product produces a valence or comparison
value similar to that shown for option A.

The car purchase example described above contains for simplic-
ity, only three alternatives described by two primary attributes.
However, most decisions involve a larger number of attributes, and
Equation 1la is applicable with arbitrary numbers of alternatives
and attributes. However, in practice it is useful to group the
possibly large number of attributes into two subgroups, a relatively
small subgroup of primary attributes of importance and a larger
subgroup of irrelevant attributes. For example, the experiments
discussed later usually design the options by manipulating a few
primary dimensions, but these options may also differ on a number
of other irrelevant attributes. Even in these more complex settings,
a simplified analysis can be performed by partitioning a
p-dimensional attention weight vector into two components W(r)’
= [W,(2)', W (z)'], where W,(¢) is a g-dimensional component
containing the primary dimensions and W(¢) contains the remain-
ing p—q irrelevant dimensions. Then Equation 1a can be rewritten
in terms of the primary and irrelevant dimensions as follows:

V(1) = CMW(r) = CM,W (1) + (1), (1b)

where €(f) = CM,W,(¢) can be treated as an stochastic error or
residual term.

Preferences. At any moment in time, each alternative in the
choice set is associated with a preference strength. The preference

! In this application we assume that the attention weights are identically
and independently distributed over time according to a simple Bernoulli
process. However, Diederich’s (1997) multiattribute decision field model
employs a more sophisticated Markov process for switching attention to
attributes. The Bernoulli process is a simple special case of the more
general Markov process, but it is sufficient for the present purposes.
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strength for alternative i at time ?, denoted P(?), represents the
integration of all the valences considered for alternative 7 up to that
‘point in time. The preferences for all the alternatives form a
preference state vector, denoted P(#). For example, a choice among
three options {A, B, C} produces the three-dimensional preference
state P(f) = [PA(0), Pg(1), Pc(1)]'.

A new state of preference P(r + 1) is formed at each moment
from the previous preference state P(7) and the new input valence
vector, V(¢), according to the following linear stochastic difference
equation:

P(r+ 1) =SP() + V(r + 1). 2)

According to this simple updating equation, the new preference
state is a weighted combination of the previous preference state
and the new input valence. The dynamic behavior of this modet is
determined by two factors: the initial preference state P(0) at time
t = 0, and the feedback matrix S.

Initial preference state. In general, the initial preference state
represents a residual bias left over from previous experience with
choice problems. For example, status quo effects (Samuelson &
Zeckhauser, 1988), previous habits, or experience and memory for
the previous history of choices can be captured by the initial state.
For novel choice problems, the initial state may be considered
unbiased, in which case P(0) = 0. The applications presented
below are based on the latter assumption.

Feedback matrix. The feedback matrix S shown in Equa-
tion 2 contains the self-connections and interconnections among
the choice alternatives. The diagonal elements, S;;, determine
the memory of the previous preference state for a given alter-
native. These self-feedback loops are needed to integrate the
valences for a given option over time, and they allow the
preference strength within an alternative to grow or decay over
time. If the self-feedback loop is set to zero, then that option has
no memory of its previous state. If the strength of the self-
connection is set to one, then that option has perfect memory of
its previous state. Intermediate strengths, between zero and one,
provide partial memory and limited decay. For the present
work, the self-feedback loops are identical for all options, that
is, S;; is the same for all i.

The off-diagonal elements, S;; for i # j, determine the infiuence
of one alternative on another. These interconnections are generally
negative so that they produce competitive influences. If the inter-
connections are all zero, then the alternatives do not compete at all
and instead they grow or decay independently and in parallel. If the
interconnections are negative, then strong alternatives suppress
weak alternatives. The strengths of the interconnections are deter-
mined by the concept of lateral inhibition (discussed again in the
section on connectionist networks). The basic idea is that the
strength of the lateral interconnection between a pair of options is
a decreasing function of the distance between these two options in
the multiattribute space. :

More formally, it is assumed that each alternative is represented
as a point in a multidimensional space with dimensions defined by
the attributes used to characterize the choice alternatives. For
example, Figure 1 illustrates a small set of cars placed within a
two-dimensional space characterized by quality and economy. In
this example, Options A and B are highly dissimilar, and two other
options, S and D, are both highly similar to option A. Thus pairs
(A, S) and (A, R) have much stronger inhibitory interconnections

than pairs (A, B), (S, B), or (R, B). Define d,; as the psychological
distance between options { and j in this multiattribute preference
space. Then the interconnection between options i and j is deter-
mined by S;; = F[d(A;, Aj)], where F is a decreasing function. At
this point we do not need to specify the form of F (e.g., exponential
is one possibility; see Shepard, 1964). But this equation does place
two important constraints on the lateral inhibition connections:
One is symmetry, S; = S;, and the second is that the interconnec-
tion decreases with distance.

Conceptually, options that are unrelated to each other elicit little
or no competition, whereas options that are closely related produce
greater competition. These interconnections provide a dynamic
mechanism for producing bolstering effects (Janis & Mann, 1977)
and justification effects (Simonson, 1989) in preference. When a
weak unattractive alternative is compared with a strong attractive
alternative, the negative values from the weak option feed back
through a negative connection and the product of these two factors
produces a net positive effect that bolsters or justifies the strong
option.

Multiattribute utility model. If the feedback matrix is set to
zero (S = 0), then according to Equation 2, the preference state
equals the valence input, P(r) = V(). If it is also assumed that
attention does not fluctuate across time, W(t) = w, and the
residuals in Equation 1b are zero, €(f) = 0, then valence V =
CMw produces exactly the same rank order as classic multiat-
tribute weighted additive values (Keeney & Raiffa, 1976; Von
Winterfeldt & Edwards, 1986). Applying the car purchase example
to this special case, the valence for option A reduces to v, =
Wemag + woiag) — [(Wemge + womeg) + (Wemcg + womeg)l/
2. Furthermore, v, > Max(uvg, vc) implies that (wgm, g + woltiag) >
Max{(wgmgg + wompg), Weicg + womce)]l. Thus, V produces
exactly the same rank order over alternatives as the classic multi-
attribute model under these restrictive conditions.

Dynamic Thurstone model. On the basis of the multivariate
central limit theorem, the distribution of the preference states P()
converges to the multivariate normal distribution as the number of
steps (¢) in Equation 2 becomes large. If the time period between -
steps is small, then this convergence will occur very rapidly. If the
feedback matrix S is set equal to an identity matrix (all cross-
feedback set to zero), at any fixed time point ¢, Equation 2 reduces
to a multivariate Thurstone preferential choice model (Bock &
Jones, 1968; see Appendix B for details). Note that MDFT is a
dynamic generalization of the classic Thurstone preference model,
as it describes how the mean vector and variance-covariance
matrix of the preference state evolve systematically over time.?
The mean preferences for each alternative can change signs over
time so that initially one alternative (say A) may have the largest
mean preference, but later another alternative (say C) may come to
dominate.

Summary of parameters. Altogether there are four sets of
parameters that need to be specified to derive predictions from

2 Previous theorists working in sensory, perception, and memory have
shown that unidimensional sequential sampling models provide generali-
zations of the unidimensional signal detection models (Link and Heath,
1975; Ratcliff, 1978). The present work extends these ideas to preferential
choice and provides a generalization of the multivariate Thurstone model
including arbitrary variance—covariance structures.
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MDFT. Two sets of parameters are contained in the mean weight
and value matrices, w and M, which are also required by the
classic multiattribute utility model. A third parameter is the resid-
ual variance contributed by the irrelevant attributes, which is also
required by any Thurstone-type probabilistic choice model. The
final set is contained in the symmetric feedback matrix, S, which
is required by any dynamic connectionist model. The parameters in
the S matrix are a function of the distance between alternatives in
the attribute space. In the case of three alternatives, the feedback
matrix produces at most three new parameters (self-feedback, A to
B inhibition, and A to C inhibition).

Multialternative Choice Rules

Eventually, the evolving output preferences, P(#), determine the
final choice. But the specific decision rule for determining this
choice varies depending on whether the decision time is externally
imposed versus subject controlled, as described next.

Externally controlled stopping time. Choice tasks are termed
externally controlled when the decision is made at an appointed
time or designated time point (Ratcliff, 1978; Vickers, Smith, &

“Brown, 1985). For example, a woman who has just received a
proposal for marriage may be asked to announce her decision at
breakfast the next morning. Alternatively, a woman who has just
been offered a job may be asked to sign her contract by the end of
the week. For the car choice example, the car dealer, on seeing
other customers waiting for help, may lose his patience, interrupt
the purchaser, and pressure her to make an immediate decision.

The vertical line in Figure 2 illustrates this type of stopping rule
for the new car example. In this case, the option with the highest
preference at the designated time point is chosen (option B in
Figure 2).

Formally, the probability that one alternative (say A) is chosen
from a set of three alternatives {A, B, C} at a fixed time ¢ is
determined by the relation:

Pr[A | {A, B, C} at time f] =
Pr[P.(?) > Py(2) and P,(¢) > Pc(1)]. (3)

Determination of choice probabilities for choice sets with N alter-
natives follows the same principle outlined in Equation 3, except
that it requires the conjunction of N — 1 events of the form P ,(¢) >
P, for i # A. Appendix B provides the mathematical formulas
for calculating probabilities using Equation 3.

By stopping the deliberation process at various designated time
points and estimating the choice probabilities as a function of
deliberation time, it is possible to observe the evolution of pref-
erences dynamically over time. Cognitive researchers have used
this type of paradigm to study the dynamics of memory (Dosher,
1984; Gronlund & Ratcliff, 1989; Hintzman & Curran, 1997,
Ratcliff, 1978; Ratcliff, 1980; Ratcliff & McKoon, 1982; Ratcliff
& McKoon, 1989; Reed, 1973; Wickelgren, Corbett, & Dosher,
1980). Although this method has not been applied to preferential
choice, the present theory provides simple predictions for this type
of task. These predictions will be presented later during the review
of the empirical results for preferential choice. The second type of
choice task is presented next.
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Figure 2. Ilustration of the two stopping rules. The abscissa repre-

sents time, and the ordinate represents level of preference. The three
trajectories (labeled A, B, and C) represent the preferences of each
option as they evolve stochastically over time. The vertical line to
the left represents the appointed time for the decision according to
the externally controlled stopping rule. In this case, option B would
be chosen at the designated time t = 150. The horizontal line on the
top represents the inhibitory threshold that must be reached to
make a choice for the subject-controlled stopping rule. In this case,
option A would be chosen when it crosses the threshold at time
t = 430.

Internally controlled stopping time. Choice tasks are called
internally controlled decisions when the decision maker is free to
decide how long to deliberate before finally announcing or com-
mitting to a particular choice (Ratcliff, 1978; Vickers et al., 1985).
In the car purchase example, the buyer may inform the car dealer
that she wishes to go home and think about the purchase and that
she will call back as soon as she makes up her mind. This is a
common type of choice task used in laboratory experiments on
decision making. '

The horizontal line in Figure 2 illustrates this type of stopping
rule for the new car example. In this case, a choice is made as soon
as the strength of preference for an option crosses a threshold, and
the first option to exceed the threshold is then chosen (option A in
the figure).

The choice probabilities and decision times for the internally
controlled task are determined by the first passage time distribu-
tion for a sample path to cross the threshold boundary (see Bhat-
tacharya & Waymire, 1990; Cox and Miller, 1965; Smith, 2000).
Formulas for computing the first passage time distribution (as well
as the moments including choice probabilities and mean decision
times) have been derived by Busemeyer and Townsend (1992) and
by Diederich (1997) for the binary choice case and by Busemeyer
and Diederich (2000) for more than two options. Alternatively, the
first passage time distribution for the multichoice (more than two)
case can be obtained through computer simulation (see Appendix
C for details).
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Connectionist Interpretation

Figure 3 provides an interpretation of the multialternative dy-
namic model as a connectionist network.> The first layer is a
connectionist feed-forward network (Rumelhart & McClelland,
1986). The evaluation nodes (labeled M) to the left of the figure
represent the evaluations of each alternative on each attribute. For
example, if the decision is to choose among three cars on the basis
of quality and economy attributes, then there are six possible
evaluations. (Of course, a real car purchase entails many more
attributes and alternatives.) These evaluations are filtered by mo-
mentary attention weights (labeled W) linked to the attributes.
Subsequently, the weighted evaluations are transformed by con-
trast coefficients (labeled C) to produce comparisons among the
weighted evaluations. The outputs of the first layer (labeled V) in
Figure 3 are the valences, which represent the advantage or dis-
advantage being considered for each alternative at a particular time
point. These valences change stochastically over time as the deci-
sion maker’s attention shifts unpredictably from one attribute to
another.

The second layer in Figure 3 is a competitive recursive network
(Grossberg, 1982; Grossberg, 1988; Rumelhart & McClelland,
1986). The three nodes (labeled A, B, and C) represent the three
choice alternatives (e.g., three cars). More generally, one decision
node in the recursive network corresponds to each choice alterna-
tive. The input into each decision node is the valence from the first
layer. The output activation from each decision node represents the
strength of preference for the corresponding alternative at a par-
ticular point in time. The activation level increases with positive
valences (advantages) and decreases with negative valences (dis-
advantages). Thus, the activation of a choice node at any point in
time represents the strength of the evolving preference formed by
the temporal integration of the stream of input valences.

Each decision node in the network is connected with every other
node and each decision node also has a self-feedback loop. The

Figure 3. Connectionist interpretation of multialternative decision field
theory consisting of two layers. The first layer is a connectionist feed-
forward network. The evaluations (labeled M) to the left of the figure
represent the evaluations of each alternative on each attribute. These
evaluations are filtered by momentary attention weights (labeled W) linked
to the attributes. Subsequently, the weighted evaluations are transformed
by contrast coefficients (labeled C) to produce comparisons among the
weighted evaluations. The outputs of the first layer (labeled V) are the
valences. The second layer is a competitive recursive network. The three
nodes (labeled A, B, and C) represent the three choice alternatives (e.g.,
three cars). Each node is connected to every other node and has a self-
feedback loop. The values of these connections are given in S, the feedback
matrix. The outputs are preferences (labeled P).

self-feedback loop integrates the valences for a given option over
time, allowing activation within a node to grow or decay. The
interconnections among nodes represent a competitive system so
that activation of one node inhibits the other nodes. The intercon-
nection strengths are assumed to be a decreasing function of the
perceived dissimilarity between alternatives within the multiat-
tribute space. This corresponds to the principle of lateral inhibition
used in competitive neural networks. Lateral inhibition is a key
principle for producing edge enhancement effects and Mach band
effects in perception (see Cornsweet, 1970). In this application, the
lateral inhibition effects are used to produce bolstering or justifi-
cation effects observed in decision making (Janis & Mann, 1976;
Simonson, 1989). This completes the presentation of the basic
theory, and now we turn to several important empirical applica-
tions for multialternative preferential choice.

Applications of MDFT to Central Empirical Findings
Predictions for the Similarity Effect

According to MDFT, the following explanation causes the sim-
ilarity effect. Consider the choice among options A, B, and S in
Figure 1. Whenever attention happens to focus on the quality
attribute, then both options A and S gain advantages while option
B gets a disadvantage. Likewise, whenever attention happens to
focus on the economy attribute, then both options A and S get
disadvantages while option B gains an advantage. Thus, the va-
lences of A and S are positively correlated with each other and
negatively correlated with B. Participants who tend to focus more
on economy will choose option B whereas participants who tend to
focus more on quality will choose either A or S. Thus S only hurts
or takes away choices from option A and not option B. A more
formal explanation is presented below, after a discussion of the
details about the assignment of parameters of Equation 2 to the
conditions indicated in Figure 1.

According to the value structure shown in Figure 1, car A is high
on quality and low on economy whereas car B is just the opposite.
Car S is similar to A but slightly lower on economy and slightly
better on quality. This pattern of evaluations can be represented in
a simple form by the value matrix:

E Q

1 37A
M =8 32|8

3 1B

The precise numerical values are not critical to produce the pre-
dicted pattern from the model, as long as S is a competitive
alternative with values close to option A.

The attention weights, [Wg(f), W(#)], were assumed to fluctuate
over time steps according to a simple Bernoulli process. Specifi-
cally, the probability of attending to the economy attribute was
assigned a probability wy, and the probability of attending to the

3 The connectionist interpretation presented here uses a local rather than
a distributed representation of the input features (see Rumelhart & Mc-
Clelland, 1986). The local representation was chosen because it provides a
more direct relation to previous theories in decision making. It is possible
to employ a distributed representation, but this was not required for the
phenomena considered here.
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quality attribute was assigned a probability wq, with independent
sampling across time steps (but see Footnote 1). The probability of
attending to the quality attribute was set to a slightly higher level
(wg = .45) than the probability of attending to the economy
attribute (wg = .43), and there was some small residual probability
allowed for attention to irrelevant attributes. The reason for the
slight difference in attention to each attribute was to produce a
slight preference in favor of car A over car B for the binary choice
condition. This was needed to satisfy the antecedent condition for
the test of independence from irrelevant alternatives. These same
parameters were then used to make new predictions for the trinary
choice set.

The parameters for the feedback matrix were chosen as follows.
First, the self-connections were set to a high value (§; = .94) to
produce slow decay of memory. The inhibitory connections be-
tween distant alternatives were set to very low values (S, =

Sga = Ssg = Sgs = —.001). The inhibitory connections between
the similar alternatives were set to relatively greater magnitudes
(Sas = Ssa = —.025). These parameter values satisfy a stability

requirement (i.e., the eigenvalues of the feedback matrix S are all
less than 1 in magnitude). The predicted pattern does not change
much as long as the inhibitory connections are not too large.
The predictions computed from Equation 3 are shown in Fig-
ure 4, which plots the probability of choice as a function of
deliberation time separately for different choice alternatives. The
upper and lower curves, indicated with “+” and “CJ” symbols,
respectively, represent the choice probabilities for cars A and B
from the binary choice comparison. As required for the antecedent
condition of the independence test, the probability of choosing A
grows over time to become larger than B for the binary choice. The
critical feature is revealed by the upper and lower curves indicated
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Figure 4. Multialternative decision field theory predictions for the sim-
ilarity effect. The probability of cheice is plotted as a function of deliber-
ation time separately for different choice alternatives. The upper and lower
curves indicated with “+” and “[J” symbols, respectively, represent the
choice probabilities for cars A and B (PA and PB, respectively) from the
binary choice comparison. The upper and lower curves indicated with an
“O’” and “X” symbols, respectively, represent the choice probabilities for B
and A from the trinary choice comparison.

with “O” and “X” symbols, respectively, representing the choice
probabilities for B and A from the trinary choice comparison.
Consistent with previous research, the model predicts that the
probability of choosing B is higher than A for the trinary choice
set, thus violating the independence from irrelevant alternatives
property.

Note that similarity also could be manipulated by placing the
pew alternative S lower and to the right of A (by slightly increas-
ing the economy and slightly decreasing the quality of S compared
with A) to produce the following value matrix:

E Q

1 371A
M, =125 28]S

3 1B

Although the dynamics are slightly different, the model still cor-
rectly predicts the same pattern for the similarity effect. The binary
choice probability for alternative A over B asymptotes at Pr{A | A,
B] = .55, but the trinary choice probability for option B, Pr[B | A,
B, S] = .4, exceeds that for option A, Pr{A | A, B, S] = .3 at this
same time point.

According to MDFT, similarity effects are caused by the cor-
relations among valences produced by the primary attributes.
When attention is focused on the economy attribute, then the
valence for option B will be greater than the valences for options
A and S. Alternatively, whenever attention is focused on the
quality attribute, then the valence for option B will be less than the
valences for options A and S. This causes the differences between
B and A to be positively correlated with the differences between B
and S. Figure 5 illustrates the effects of this correlation on choice
probability. The left and right panels show the equal density
contours from the multivariate normal densities used to compute
the choice probabilities for the trinary choice set. The left panel
shows the contour for option A, and the right panel shows the
contour for option B. Choice probability is related to the area
above and to the right of the zero preference state on the vertical
and horizontal axes. Note that the strong positive correlation for
option B rotates the elliptical contour into the upper right corner,
thus increasing the choice probability for option B relative to A.

If the effect of the correlations among the primary attributes is
diminished and instead the residual variance due to irrelevant
attributes is amplified (by increasing the variance of the noise term
€), then the similarity effect disappears.* For example, if the
residual variance is increased tenfold (see Appendix B for details),

*If the covariance matrix for the valence is constrained to satisfy
sphericity (zero correlations), then the multivariate Thurstone model re-
duces to the Case V version, and the latter is a special case of the simple
scalable class of models (cf. Bockenholt, 1992). However, according to
MDFT, the covariance matrix for the valence reflects the similarity struc-
ture among options in the choice set, and this implies that the covariance
matrix does not satisfy sphericity. Decision field theory is not the first to
make important use of the covariance matrix for modeling stimuli within a
multidimensional space. Previous applications of the multiattribute Thur-
stone model for binary choices (see De Soete et al., 1989) used this concept
to explain violations of strong stochastic transitivity. The covariance matrix
also plays a crucial role in Ashby and Townsend’s (1986) general recog-
nition theory, and in Ashby & Maddox’s (1992) decision-bound theory of
categorization.
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then the asymptotic binary choice probability of A over B remains
at Pr{A | {A, B}] = .55, but the trinary choice probability of
choosing A, Pr{A | {A, B, S}] = .36, remains higher than that for
alternative B, Pr{B | {A, B, S}] = .30.

It is interesting that the similarity effect is strongest when all the
inhibitory interconnections are set to zero. Thus, lateral inhibition
impedes the similarity effect. However, inhibitory interconnec-
tions are needed for the other effects discussed later. To maintain
consistency in our assumptions, we used the same lateral inhibition
principle across all three of the empirical applications.

Figure 6 shows a broader examination of the predictions for the
similarity effect derived from MDFT. This figure shows the dif-
ference between the probability of choosing option A and the
probability of choosing option B from the trinary choice set,
plotted as a function of the two key theoretical parameters. One
parameter is the strength of the inhibitory connection between the
nodes for options A and S, S,g, and the second is the standard
deviation of the residuals from the irrelevant attributes (SD of €).
The probabilities of attending to each dimension were equated,
Wg = Wq so that the binary choices between A and B are predicted
to be equal. The similarity effect occurs when the difference Pr[A |
{A, B, S}] — Pr[B | {A, B, S}] is negative (below the line).

A close look at Figure 6 shows that the similarity effect is
strongest when both the standard deviation (SD) of the residuals
and amount of lateral inhibition are low. Consider, for example,
the curve produced by the low residual SD: As the lateral inhibi-
tion increases the effect diminishes, but one can see that even with
relatively high lateral inhibition the effect is still present. Slightly
increasing the residual SD when inhibition is high, however,
causes the effect to disappear. Now consider the curve produced
when lateral inhibition is low: As the residual SD increases the
effect diminishes, but even at a relatively high SD one can see that
the effect is still present. Under relatively high residual SD, lateral
inhibition still must be increased a sizable amount before the effect
disappears. In sum, the similarity effect occurs whenever the
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Figure 5. A contour plot showing the effects on choice probability of
correlation among valences produced by the primary dimensions. The left
and right panels show the equal density contours from the multivariate
normal densities used in Equation 3 to compute the choice probabilities for
the trinary choice set. The left panel shows the contour for option A, and
the right panel shows the contour for option B. Choice probability is related
to the area above and to the right of the zero preference state on the vertical
and horizontal axes.
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Figure 6. A response surface plot showing the difference between the
probability of choosing option A and the probability of choosing option B
from the trinary choice set plotted as a function of two key theoretical
parameters. One parameter is the strength of the inhibitory connection
between the nodes for options A and S, S,¢, and the second is the standard
deviation of the residuals for the irrelevant attributes, €. The similarity
effect occurs when the difference Pr[A|{A, B, S}] — Pr{B|{A, B, S}] in the
figure is negative (below the line).

covariance matrix for the primary dimensions is relatively more
important than the residual variance. Note that experiments on the
similarity effect used carefully designed stimuli that minimized the
influence of irrelevant attributes to maximize the similarity effect.’

Similarity effects are not restricted to multialternative choice
contexts, and they also have been observed using only binary
choices (Mellers and Biagini, 1994). Once again, refer to Figure 1
and first consider two pairwise choices: One choice between
option A and option R, and a second choice between option B and
option R. In this paradigm, option R is used as a standard for
comparing the preference strengths of options A and B. Note that
option A is more similar to option R than option B: Option R has
almost the same quality as A but differs more on economy. Under
this condition, Mellers and Biagini (1994) found that Pr{A | {A,
R}] > Pr{B | (B, R}]. In other words, when option R is used as a
standard for comparison, option A appears to produce a stronger
preference than option B.

Now consider two other pairwise choices: One choice between
option A and option T, and a second between option B and option
T. In this case, option T is used as a standard for comparing the
preference strengths of options A and B. Note that option B is
more similar to option T than option A: Option T has almost the

5 To further check the robustness of the similarity effect across different
stopping rules, the choice probabilities were also computed using the
internally controlled stopping rule (see Appendix C for details). The resuits
from the internally controlled stopping rule replicate those shown in
Figure 4. The probability that A is chosen over B in the binary choice
is Pr[A|{A, B}] = .55, as before, but the trinary probability of choosing B,
Pr{B|{A, B, S}] = .35, is higher than the trinary probability of choosing
A, Pr[A|{A, B, S}] = .25, again violating the independence from irrelevant
alternatives property.
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same quality as B but differs more on economy. Under this
condition, Mellers and Biagini (1994) found Pr[B | {B, T}] > Pr[A
| {A, T}]. In other words, when option T is used as a standard for
comparison, option B appears to produce a stronger preference
than option A. This reversal in binary choice probabilities consti-
tutes another type of violation of independence between alterna-
tives. This violation rules out all simple scalable utility models for
binary choices (Tversky, 1972).

MDFT predicts these results using exactly the same parameters
as used in Figure 4, except for changes in the value matrices:

E Q E Q
1 371A 1 37A
M=|5 31| R M=|25 L1|T
3 1]B 3 1/|B

The asymptotic predictions derived from Equation 3 reproduce the
violation of independence observed by Mellers & Biagini (1994):
Pr{A | {A,R}] = .99 > Pr[B | (B, R}] = .63; Pr[B | {B, T}] =
99 > Pr[A | {A, T}] = .77. These predictions are robust with
respect to lateral inhibition: The same result is obtained with
Sar = Sgr = —.025 and with S,g = Sgr = 0.

The intuitive reason for this predicted pattern is simple to
explain. First consider the choice between options A and R: When
attention is focused on quality, little difference in valence occurs,
but when attention is focused on economy, a large positive valence
favoring option A occurs. Next consider the choice between op-
tions B and R: When attention is focused on quality, large valences
favoring option R occur, but when attention is focused on econ-
omy, large valences favoring B occur. Analogously, when choos-
ing between B and T, the valence almost always favors B, but
when choosing between A and T, valences oscillate back and forth,
one moment favoring A, the next moment favoring T. Technically,
binary choice probability is determined by the ratio of the mean
difference and the standard deviation of the difference (see Ap-
pendix B). The variance of the preference difference is larger for
the choice between dissimilar (e.g., B and R) as compared to
similar (e.g., A and R) options.

So far we have shown that MDFT can reproduce the well-
known similarity effect under a wide variety of conditions when
the valences on the primary attributes are correlated in a manner
that reflects the similarity structure in the choice set. But several
earlier choice models were developed to explain these results
(EBA model of Tversky, 1972, and the multivariate Thurstone
model of Edgell & Geisler, 1980, for multiple choice; Mellers &
Biagini, 1994, for binary choice). The next challenge is faced by
simultaneously explaining the similarity effect as well as the
attraction effect. All of the above mentioned multiple-choice mod-
els satisfy a general property known as the regularity principle.
The attraction effect described next produces empirical violations
of the regularity principle.

Predictions for the Attraction Effect

According to MDFT, the following explanation causes the at-
traction effect. Consider a choice among options A, B, and D in
Figure 1. Comparisons of the dominated decoy with the average of
the other two options eventually produces a negative preference
state for the dominated decoy, D. Then this negative preference
state from the dominated decoy feeds through a negative inhibitory

link to the closely positioned dominant option, A. The two nega-
tives cancel to produce a net positive bolstering effect of the
dominated decoy on the dominant option. Thus the decoy makes
the dominant option “appear” stronger, similar to an edge enhance-
ment effect in perception. Option B does not experience any
bolstering effect because it is too dissimilar to D, and the inhibitory
connection is too weak to produce the effect. A more formal
analysis is provided below.

The only change in assignment of parameters that needs to be
made for computing the predictions from Equation 3 for the
attraction effect is the value matrix M (which is necessary to
represent the new location of dominated option D in Figure 1). All
of the remaining parameters were kept constant across the two
different applications.

According to the value structure shown in Figure 1, car A is high
on quality and low on economy whereas car B is just the opposite.
Car D is similar to A but slightly inferior on economy and quality.
This pattern of evaluations can be represented in a simple form by
the value matrix

E Q

1 371A
M,=|.5 25| D

3 1B

Once again, the precise numerical values are not critical to produce
the predicted pattern from the model. For example, very similar
results are obtained when the values of D are set to (.75, 2.75)
instead of (.5, 2.5).

Figure 7 shows the predictions of MDFT for the attraction
effect. The figure plots choice probability as a function of delib-
eration time separately for different choice alternatives. The upper
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Figure 7. A plot of the multialternative decision field theory predictions
for the attraction effect. Choice probability is plotted as a function of
deliberation time separately for different choice alternatives. The upper and
lower curves indicated with “+” and “[1” symbols, respectively, represent
the choice probabilities for cars A and B (PA and PB, respectively) from
the binary choice comparison. The lower and upper curves indicated with
an “O” and “x” symbols, respectively, represent the choice probabilities for
B and A from the trinary choice comparison.
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and lower curves indicated with “+” and “03” symbols, respec-
tively, represent the choice probabilities for cars A and B from the
binary choice set. Similar to Figure 4, the probability of choosing
A grows over time to become larger than B for the binary choice.
The upper and lower curves, indicated with “x”” and “O” symbols,
respectively, represent the choice probabilities for A and B from
the trinary choice set. Consistent with previous research, the model
correctly predicts that the probability of choosing A is higher from
the trinary choice set (the “X” curve) as compared to the proba-
bility of choosing A from the binary choice set (the “+” curve),
thus violating the regularity property.

To check the robustness of this prediction, it was recomputed
using Equation 3 after changing the probabilities attending to each
of the primary attributes. In one case, the probability of attending
to each attribute was equated (wg = wq, = .45), producing binary
choice probabilities equal to .50 for A and B, but the probability of
choosing A from the trinary set rose to .69. In another case, they
were reversed (wg = .43, w, = .45), producing a binary choice
probability equal to .45 for option A, but once again the probability
of choosing A from the trinary set rose to .65. In both cases, the
same pattern of predictions was obtained for the dominating alter-

native—the decoy increased the predicted probability of choosing .

the dominating alternative (i.e., adding D increased the probability
of choosing A) in agreement with results from Huber et al. (1982).

Note that Figure 7 was generated using exactly the same model
parameters as Figure 4, except for the change in the M matrix to
reflect the change of option D from a competitive to a dominated
alternative close to option A. But the predicted effect of adding the
dominated option (Figure 7) was just the opposite of the predicted
effect of adding the competitive option (Figure 4). The theoretical
reason for this dramatic change in predictions needs to be under-
stood. If the lateral inhibitory connections are set to zero so that the
feedback matrix S is set equal to a diagonal matrix, then the
attraction effect disappears. In this case, the predictions computed
from Equation 3 produced the following results: The decoy D is
virtually ignored, the probability of choosing A from the binary
and trinary choice sets remain identical and both equaled .55, and
the decoy has no effect on the dominating alternative A.

It turns out that the correlations among the primary attributes do
not play a crucial role for the attraction effect. Figure 8 shows the
predictions when the lateral inhibition is reset to its original value
(as used in Figure 7), but the effect of the residual variances (SD
of €) is increased tenfold. As can be seen in Figure 8, the attraction
effect still occurs, although now it takes some time to build up. In
sum, lateral inhibitory connections are crucial and covariance
structure is less important for MDFT to produce the attraction
effect.

Figure 9 shows a more detailed examination of the predictions
for the attraction effect derived from MDFT. This figure shows the
difference between the probability of choosing option A from the
trinary set and the probability of choosing A from the binary set,
plotted as a function of the two key theoretical parameters: the
strength of the inhibitory connection between the nodes for options
A and D, S,p,, and the standard deviation of the residuals for the
irrelevant attributes, SD of e. The probabilities of attending to each
dimension were equated, wg = wg so that the binary choices
between A and B are predicted to be equal. The attraction effect
occurs when the difference Pr[A | {A, B, D}] — Pr{A | {A, B}]is
positive (above the line).
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Figure 8. A plot of the multialternative decision field theory predictions
for the attraction effect when the influence of the diagonal matrix of
residual variances is increased tenfold. The upper and lower curves indi-
cated with “+” and “0J” symbols, respectively, represent the choice
probabilities for cars A and B (PA and PB, respectively) from the binary
choice comparison. The lower and upper curves indicated with “O” and
“x” symbols, respectively, represent the choice probabilities for B and A
from the trinary choice comparison.

A close look at Figure 9 shows that the attraction effect is
strongest when the SD of the residuals is low and amount of lateral
inhibition is high. Consider, for example, the curve produced by
the low residual SD: As the lateral inhibition increases, the effect
quickly becomes present and increases dramatically with increas-
ing amounts of lateral inhibition. Now consider the curve produced
when lateral inhibition is low: When the residual SD is low, the
effect is not present, and increasing residual SD does not lead to
the occurrence of the effect. In sum, lateral inhibition is much
more critical to explaining the attraction effect than is amount of
residual SD.

A complete explanation for similarity and attraction effects must
include a formal explanation for their intricate interactions. The
next section considers the effects of systematically varying the
position of the decoy on similarity and attraction effects.

Similarity and Attraction Interactions

Distance effects. A fundamental implication of the lateral in-
hibitory explanation for the attraction effect is that it should
diminish with psychological distance between the decoy and the
dominant option. Refer to Figure 10, and consider moving the
decoy from position R through C and straight down the quality
attribute to position D. According to MDFT, this movement in-
creases the distanee between the decoy and dominant option,
causing the lateral inhibition between the decoy and the dominant
option to decrease. MDFT predicts that the bolstering effect of the
decoy should eventually be eliminated after moving from positions
R through C to D.

Table 1 illustrates this effect, where the results are computed
from Equation 3 using the same parameters as in Figure 7, except
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Figure 9. A response surface plot showing the difference between the
probability of choosing option A from trinary as compared with binary
choice sets, plotted as a function of two key theoretical parameters. One
parameter is the strength of the inhibitory connection between the nodes for
options A and D, S,;, and the second is the standard deviation of the
residuals for the irrelevant attributes, €. The attraction effect occurs when
the difference Pr{A|{A, B, D}] — Pr[A|{A, B}] is positive (above the line).

for the changes indicated in the table. The first column represents
the value of the decoy option on the quality attribute, and the
second column represents the lateral inhibition between option A
and the decoy. The last two columns show the probabilities of
choosing option A from the binary and trinary choice sets at
asymptote. The first and last rows represent decoy positions R and
D, respectively, in Figure 10, and the intermediate rows represent
intermediate positions for option C. As can be seen in the table, the
attraction effect gradually disappears with distance. In agreement
with this prediction, the attraction effect has been empirically

A w
T

Performance Quality

D

Driving Economy

Figure 10. A graphical depiction of possible placement of decoys in the
attribute space. The horizontal axis represents the value of each car on the
driving economy attribute, and the vertical axis represents the value of each
car on the performance quality attribute. Each car is then represented as a
point in this two-dimensional space.

Table 1
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Effect on the Size of the Attraction Effect of Increasing the
Distance Between Decoy Option and Dominant Option

A to decoy
Quality inhibition Pr(AlA, B) Pr[Al{A, B, C}]
3.00 (R) —.025 .55 .65
1.50 (C) —.008 .55 .63
75 —.003 .55 .58
.50 (D) ~.001 55 .55

found to decrease and eventually disappear with increasing dis-
tance (T. B. Heath & Chatterjee, 1991; Wedell, 1991).

Range versus frequency decoys. A more refined prediction can
be tested by considering the differential effects of decoys R versus
F shown in Figure 10. The range decoy, R, is dominated by A
because it has the same quality but worse economy than A. It is
called a range decoy because adding it to the choice set increases
the range on the economy dimension. The frequency decoy, F, is
dominated by A in that it has the same economy as A but worse
quality. It is called a frequency decoy because adding it to the
choice set increases the frequency of items below A. Using range
and frequency decoys, Huber et al. (1982) found that the decoy
effect was stronger with range decoys as compared with frequency
decoys.

According to MDFT, changing the position of the decoy
changes the similarity of the decoy to option B. Notice in Figure 10
that the range decoy is further away from B than the frequency
decoy. The principle of lateral inhibition states that inhibition
decreases as a function of distance. This implies that the inhibitory
connection between nodes for options F and B is stronger than the
inhibitory connections between nodes for options R and B.

The above explanation for the differences between range and
frequency decoys was verified by computing the predictions of
MDFT using different inhibitory connections in the feedback
matrix S for range and frequency decoys. Furthermore, to check
the robustness of the theory’s predictions concerning the attraction
effect, the internally controlled stopping rule was used to compute
the probabilities for this application (but note that similar results
are obtained using Equation 3). For the range decoy, the following
S matrix shown was used:

A R B
95 -.09 -.0017 A
§S=|—-.09 95 -—-.003| R
—.001 -.003 95 | B

For the frequency decoy, a slightly different S matrix was used:

A F B
95 —-.09 —-.0017 A
S=|-.09 95 —-.02 | F
-.001 —-.02 95 | B

Notice that the only difference between these two matrices is the
inhibition between the decoy and B. For the range decoy the value
was —.003, and for the frequency decoy it was —.02. Once again,
referring to Figure 10, these numbers reflect the fact that F is closer
to B than is R. Thus, the only change needed to capture the
different effects of range versus frequency decoys was a change in
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lateral inhibijtion that reflects the distances of the objects in at-
tribute space.

Figure 11 shows the predictions of MDFT under various choice
conditions for range and frequency decoys. Each point in the figure
represents a pair of probabilities, Pr[A | {A, B}], Pr{A | {A, B, C}],
obtained from the same choice condition. In Figure 11, the regu-
larity principle requires all of the points to lie on or below the
identity line. Violations of regularity occur when any of the points
appear above the identity line. As can be seen in Figure 11, the
mode] predicts that adding either a frequency or a range decoy
produces violations of regularity across the entire range of binary
choice probabilities. Furthermore, the range decoy has a larger
effect as compared with the frequency decoy, consistent with the
findings of Huber et al. (1982).

Inferior decoys. A final test MDFT is obtained by considering
the effect of adding what is called an inferior decoy to the choice
set. For example, consider the decoy labeled “I” in Figure 10.
Technically, this is a competitive option because it is superior to
option A on quality. Practically, however, it is inferior to option A
because the small advantage in terms of quality is offset by a large
disadvantage in terms of economy. Inferior decoys are like dom-
inated decoys in the sense that they are rarely ever chosen. Huber
and Puto (1983) examined the effects of inferior decoys and found
that they produced attraction effects similar to dominated decoys.

Note that if option I shown in Figure 10 is shifted horizontally
over to the right toward the position of option S in Figure 10, then
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Figure 11. A plot showing resuits from multialternative decision field
theory under various choice conditions for range and frequency decoys.
The abscissa represents the probability that the dominating option (A) is
chosen from a binary choice set. The ordinate represents the probability
that A is chosen out of a trinary choice set that includes a decoy. Each point
in the figure represents a pair of probabilities (Pr), Pr{A|{A, B}], Pr[A|{A,
B, C}], obtained from the same choice condition. The line connected by
solid circles represents the probability that A is chosen when the frequency
decoy was presented for various choice conditions. The line connected by
the solid triangles represents the probability that A is chosen when the
range decoy was presented for various choice conditions. The diagonal
identity line represents the separation of where the attraction effect does
and does not occur. Any points above the line represent areas where the
effect does occur and below where it does not.

the inferior option changes into a highly competitive option. Huber
and Puto (1983) also examined the effect of gradually changing the
inferior option into a competitive option in this manner. They
found that the proportion of choices for option A decreased, the
proportion of choices for option I increased, but the proportion of
choices for option B changed very little. In other words, both
attraction and similarity effects were demonstrated within the same
study.

These interactions are precisely the effects expected from
MDFT. Table 2 shows the results at asymptote computed from
Equation 3 using the same parameters as used to produce Figures 4
and 7, except for changes in the value of economy for the inferior
option. The first column shows the gradual shifts in the value of
the economy attribute from .85 (i.e., the value used to define
option S in Figure 10) to .55 (i.e., the value used to define option
I in Figure 10). The second and third rows show the probabilities
of choosing options A and B from the trinary choice set {A, B, I}.
As can be seen in the table, decreasing the economy drastically
increased the probability of choosing option A, while the proba-
bility for B changed very little. Also note that an attraction effect
is produced by the inferior option when the economy was very low
in value. These predictions are in accord with the findings by
Huber and Puto (1983).

Although earlier choice models have been proposed specifically
to account for the attraction effect (e.g., Ariely & Wallsten, 1995;
Dhar & Gilazer, 1996), only MDFT has been simultaneously ap-
plied to both the similarity and attraction effects and their inter-
actions. Furthermore, these earlier models never attempted to
formally explain another finding known as the compromise effect
described next.

Predictions for the Compromise Effect

The compromise effect presents a real challenge for MDFT
because no special mechanisms were built into the theory to
produce this effect. Nevertheless, the same mechanisms that
MDFT used to explain the similarity and attraction effect work
together to produce the compromise effect.

The experimental conditions used to produce the compromise
effect required a few changes in model parameters. First, the
values in the matrix M were changed to represent the new location
of compromise option C in Figure 1 as follows. According to the
value structure shown in Figure 1, car A is high on quality and low
on economy whereas car B is just the opposite. Car C is in between
these two, being inferior to B on economy and inferior to A on
quality. This pattern of evaluations can be represented in a simple
form by the value matrix:

E Q

1 37 A
M=1{2 2| C

3 1|B

Once again, the precise numerical values are not critical to produce
the predicted pattern from the model as long as the compromise
position indicated in the matrix is satisfied.

The inhibitory connections in the feedback matrix also need to
be changed to reflect the equal distances between the compromise
option and the two extreme options. The self-connections were set
to S;; = .94 (as before), the inhibitory connections between the two
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extreme options were set to S, = S5, = —.001 (as before), and
the inhibitory connections between the compromise and each
extreme were set to Sy = Sca = Scg = Sec = —.025. Note that

all these parameters are exactly the same as those used to produce
the attraction effect in Figure 8. The only difference is that the
inhibitory connections between A and C are now set to the same
values as the inhibitory connections between C and B, reflecting
the fact that the compromise is placed in between the two
extremes.

Finally, the probability of attending to the quality attribute was
set equal to the probability of attending to the economy dimension
(wg = wg = .45). This was necessary to meet the antecedent
conditions for the compromise effect. Using these parameters
forced all of the binary choice probabilities equal to .50. The
remaining model parameters used to compute the predictions from
Equation 3 were assigned exactly the same values as those used to
produce the attraction effect shown in Figure 8.

Figure 12 shows the predictions of MDFT for the compromise
effect. The figure plots choice probability as a function of delib-
eration time separately for different choice alternatives. The upper
curve indicated with a “+” symbol represents the choice proba-
bility for the compromise car C out of the trinary choice set. The
overlapping two lower curves represent the choice probabilities for
the two extreme options, A and B, from the trinary choice set. The
choice probabilities from the binary choice set are not shown
because all three are exactly equal (.50). Figure 12 shows that the
probability of choosing the complement alternative, C, grows over
time to become larger than both A and B. Consistent with previous
research, the model correctly predicts that the probability of choos-
ing the compromise from the trinary set is higher than the ex-
tremes, despite the fact that the binary choice probabilities are all
equal.®

Once again, lateral inhibition is crucial for producing this effect.
If the lateral inhibitory interconnections are eliminated, then the
predicted compromise effect disappears. But the explanation is
quite different from that used to explain the attraction effect.
Lateral inhibition does not bolster the mean preference of the
compromise alternative because all three options are assigned
equally attractive weighted values. The mean valence input is zero
for all, and multiplication of the feedback matrix, S, by the zero
mean input produces zero mean output, and thus the mean pref-
erence state remains at zero over time.

Table 2
Effect of Inferior Option on Trinary Choice Probabilities

Economy for I Pr{A|{A, B, 1}] Pr{B|{A, B, I}]

85 .33 43
75 .50 42
65 57 40
55 .61 38

Note. The first column refers to the value of the M matrix corresponding
to the first attribute, economy, for the inferior option 1. The first row
corresponds to the position of option S in Figure 10, and the last row
corresponds to the position of option I in Figure 10. The second and third
rows correspond to positions of inferior alternatives shifted horizontaily
along the line from I to S. The binary choice probability of choosing A over
B was uniformly equal to .55 for all rows.
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Figure 12. Predictions of multialternative decision fieid theory for the
compromise effect. Choice probability is plotted as a function of deliber-
ation time separately for different choice alternatives. The upper curve
indicated with a “+” symbol represents the choice probability for the
compromise car C (PC3) out of the trinary choice set. The overlapping two
lower curves represent the choice probabilities for the two extreme options,
car A (PA3) and car B (PB3), from the trinary choice set.

The source of the effect lies in the operation of lateral inhibition
on the momentary fluctuations in valence. The negative inhibitory
connections between the nodes for the compromise and extreme
options cause the compromise to be negatively correlated with
both of the extremes. This in turn causes the differences between
the compromise and extreme option A to be positively correlated
with the difference between the compromise and extreme option B.
Finally, the positive correlation for the compromise provides a
probabilistic advantage over the extreme option in Equation 3.

The probabilistic advantage produced by the positive correlation
can be seen in Figure 13. The left and right panels show the equal
density contours from the multivariate normal densities used in
Equation 3 to compute the choice probabilities for the trinary
choice set. The left panel shows the contour for an extreme option
(e.g., A), and the right panel shows the contour for the compromise
option C. Choice probability is related to the area above and to the
right of the zero preference state on the vertical and horizontal
axes. Note that the relatively stronger positive correlation for the
compromise rotates the elliptical contour further into the upper
right comner, thus increasing the choice probability for the com-
promise option.

At this point, we can examine one of the most important issues
concerning the explanation of the similarity, attraction, and com-

S To check the robustness of the predictions for MDFT, the predictions
were computed again using the internally controlled stopping rule and
slightly different parameters (see Appendix C for details). The parameters
were assigned in a manner to guarantee that all three binary choice
probabilities were equal to .50. The results for the trinary choice set
produced the same pattern of results as shown in Figure 12: The probability
of choosing the compromise (.48) exceeded the probability of choosing
either the upper extreme option A (.27) or the lower extreme option B (.25).
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Figure 13. A contour plot showing the effects on choice probability of
correlation among valences produced by the primary dimensions. The left
and right panels show the equal density contours from the multivariate
normal densities used in Equation 3 to compute the choice probabilities for
the trinary choice set. The left panel shows the contour for an extreme
option (e.g., A), and the right panel shows the contour for the compromise
option C. Choice probability is related to the area above and to the right of
the zero preference state on the vertical and horizontal axes.

promise effects: How robust are the predictions for all three
effects? To answer this question, we first computed the effects
predicted by MDFT for each pair of values for the two key
parameters across the entire range of the parameter space. Then for
each pair of parameter values, we determined whether all three
effects were simultaneously present in the appropriate direction.
The results of this response surface analysis are shown in Fig-
ure 14, where the vertical axis of Figure 14 represents 22 equally
spaced levels of residual standard deviation, the horizontal axis
represents 22 equally spaced levels of lateral inhibition, and the 22
by 22 matrix covers the entire range of parameter values from
Figures 6 and 9. Each solid point in this figure indicates a pair of
parameter values that produces all three effects.

From Figure 14, it is apparent that massive regions of the
parameter space (i.e., combinations of lateral inhibition and resid-
ual SD) exist where all these effects are expected.

The compromise effect occurs when the compromise option
hurts or takes away shares equally or symmetrically from both
extreme alternatives (Simonson & Tversky, 1992; Tversky &
Simonson, 1993). However, not all stimuli were precisely designed
to produce this symmetry. Simonson and Tversky (1992) also
reported unequal or asymmetric effects, called polarization effects,
in which the compromise hurt one extreme more than the other
extreme. The polarization effect also can be accommodated within
MDFT by relaxing the assumption that the psychological distances
between the compromise option and each extreme option are
exactly equal. To demonstrate a polarization effect, the trinary
choice probabilities are recomputed from Equation 3 using exactly
the same parameters as used in Figure 12 with the following single
exception: The inhibitory connection between option C and B was
changed to Sy = —.01 (slightly less than the inhibitory connec-
tion S, = —.025 between options C and A). The results for the
binary choices were unchanged, and the results at asymptote for
the trinary set produced a polarization effect. The compromise C is
chosen with probability .35, the extreme option A is chosen with

the same probability .35, but the probability of choosing the other
extreme B was reduced to .30. Thus, allowing asymmetry in the
lateral inhibition connections reproduces the polarization effect
reported by Simonson and Tversky (1992).

Tversky and Simonson (1993) developed the context-dependent
advantage model to explain the compromise effect and attraction
effects. However, there are three advantages to be claimed for
MDFT over this earlier theory. First, as shown in Appendix A, the
context-dependent advantage model fails to account for the simi-
larity effect. Second, this earlier theoretical treatment never at-
tempted to formally address the interactions between similarity
and attraction (see Tables 1 and 2). Third, the context-dependent
advantage model provides only an algebraic description of the
evaluation of multialternative choice options, and it does not have
any mechanism for describing the predecisional search measures,
described next.

Predecisional Search

It is commonly accepted among decision researchers that dif-
ferent decision strategies are used depending on the number of
alternatives presented in the choice set (cf. Payne, Bettman, &
Johnson, 1993; Wright & Barbour, 1977). At the beginning, when
a large number of alternatives are being considered, a simple
elimination process is used to quickly screen out options that are
unacceptable on the first couple of attributes. Later, when only a
few competitive options remain after this initial screening, a more
deliberative compensatory process is used to make the final selec-
tion. For example, consumers may start by using an EBA-type
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Figure 14. A plot of all the parameter values that simultaneously repro-
duce all three effects. The vertical axis represents 22 equally spaced levels
of residual standard deviation, the horizontal axis represents 22 equally
spaced levels of lateral inhibition, and the 22 by 22 matrix covers the entire
range of parameters examined in Figures 6, 9, and 15. Each solid point in
this figure indicates a pair of parameter values that produces all three
effects.
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choice rule (Tversky, 1972) and then later switch to a weighted
additive difference rule (Tversky, 1969).

A large amount of evidence has accumulated over the past 20
years for strategy-switching dependent on choice set size (see
Payne et al., 1993). One index used to monitor strategies is the
proportion of information searched, defined as the ratio of the
number of cells considered out of the total the number of cells
available within an alternative by attribute value matrix. This index
has been found to decrease as the choice set size increases.
Another important index is the direction of search, defined as the
ratio (between-attribute comparisons — within-attribute compari-
sons)/(within-attribute comparisons + between-attribute compari-
sons). This index has been found to decrease in the negative
direction favoring more within-attribute comparisons as the choice
set size increases. Both of these findings are consistent with the
idea of strategy-switching from a more thorough compensatory
process to a quick elimination process as the choice set size
increases. Other process measures based on eye movements and
memory recall of values also support this general idea (see I. P.
Levin & Jasper, 1995; Russo & Rosen, 1975).

In this section, we show how MDFT mimics strategy-switching
simply by adding a second lower elimination boundary to the
internally controlled stopping rule (an idea first proposed by Rat-
cliff, 1978). Previous applications of the internally controlled
stopping rule considered only the case where there was an upper
acceptance boundary. Now consider the case where there is only a
lower rejection boundary and no upper acceptance boundary. Fig-
ure 15 illustrates an example for a hypothetical deliberation pro-
cess involving five new cars that are evaluated along three at-
tributes. The abscissa represents time and the ordinate represents
preference. The lower reject boundary is placed at —50 in the
figure. Each line represents the evolution of preferences computed
from Equation 2 for a particular car option over time. The vertical
lines represent shifts: of attention from one attribute to another
during the deliberation process. In this case, the first attribute is
economy, the second comfort, and the third quality. As can be
seen, while focusing on the first attribute, economy, two of the
options (B, E) were eliminated from the choice set. With the shift
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Figure 15. An illustration of the essential ideas for a hypothetical delib-
eration process involving five new cars that are evaluated along three
attributes. The abscissa represents time and the ordinate represents prefer-
ence. Each line represents the evolution of preferences for a particular car
option over time. The vertical lines represent shifts of attention from one
attribute to another during the deliberation process. The first attribute is
economy, the second comfort, and the third quality.

to the second attribute, comfort, no items were eliminated. How-
ever, with the shift to the third attribute, quality, two more options
(C, D) were eliminated. Finally, the choice is based on the last
remaining option (A).

The complete version of this decision process uses both an
upper acceptance boundary and a lower rejection boundary. The
lower boundary represents the criterion level of preference used to
reject options from consideration. The upper boundary represents
the criterion level of preference used to select an option as the final
choice. But in this case, there are two ways an option can be
chosen: One is to be the first to cross the upper boundary (stopping
the search), and if that fails for all options then the other is to be
the last to survive rejection.

The double-boundary version of MDFT can mimic strategy-
switching by allowing the lower reject boundary to change de-
pending on the number of options initially presented to the deci-
sion maker. When the choice set is large, the lower boundary is set
equal to a small distance below the neutral point (zero preference
state), thus allowing quick rejection of inferior alternatives and
only allowing superior alternatives to survive further consider-
ation. When the choice set is small, then the lower boundary is set
farther below the neutral point to avoid eliminating any option too
quickly and every alternative receives thorough consideration. In
general, the criterion for rejecting becomes more lenient (closer to
neutral) as the choice set size increases.

To show how this simple idea mimics strategy-switching phe-
nomena, a simulation was performed using the choice sets pre-
sented in one of the original predecisional processing studies by
Payne, Braunstein, and Carroll (1978). In this study, participants
were presented 2, 7, or 12 alternatives described by 12 attributes,
with one of three (low, medium, or high) evaluations assigned to
each alternative-attribute cell. Furthermore, the alternatives were
constructed so that each alternative was high on four attributes,
medium on four, and low on four, and the distribution varied
across alternatives so that no alternative dominated another.

One thousand simulated decision makers were run on the above
multiple-choice task using Equation 2 to generate the preferences
and double boundaries to make the final decision (see Appendix C
for details). The criterion for rejection was set to high, medium,
and low magnitudes for the 2, 7, and 12 alternative choice sets,
respectively. The main results for this simulation are shown in
Figure 16. The steeply declining curve shows the results produced
by the 12-alternative choice set, the flat curve shows the results for
the 2-alternative choice set, and the intermediate curve shows the
results for the 7-alternative choice set.

For the 12-alternative set, the majority of options are rejected
very quickly on the basis of comparisons within only the first or
second attributes. For example, the probability of rejecting any one
of the 12 options on the basis of the first attribute is .45, and the
probability of rejecting an option on second attribute (given that it
survived the first attribute) is .40. On the average, 8 out of 12
alternatives are eliminated on the basis of the first two attributes
alone. But as the number of attributes processed in increases, the
probability of rejection rapidly declines, so that the probability of
rejecting any one of the superior options that survives until the
seventh attribute is only .10 and this rejection probability gradually
approaches zero. Thus the double-boundary model behaves like an
elimination process when a large number of alternatives are avail-
able in the choice set.
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Figure 16. Strategy switching as a function of choice set size. The
ordinate represents the probability that an option is rejected, conditioned on
the event that it is not already rejected (i.e., number of options rejected
divided by the number of options still remaining). The abscissa represents
the number of attributes that have been processed during deliberation on a
choice set. The steeply declining curve shows the results produced by the
12-alternative choice set, the flat curve shows the results for the
2-alternative choice set, and the intermediate curve shows the results for
the 7-alternative choice set. Alts = alternatives.

For the 2-alternative set, the likelihood of eliminating an option
is very small. In this case, the probability of rejection remains
approximately constant at a very low average level equal to .01
across the 12 attributes. The probability that each option survives
past the first 11 attributes is approximately .90. This allows time to
consider all of the trade-offs between the two alternatives very
carefully and thoroughly on the basis of a very large number of
attributes before reaching a decision.

Using these simulation results, we also can compute the indices
for the two main predecisional search measures mentioned earlier.
The proportion of information search is a decreasing function of
the rejection rate, and the rejection rate increases with choice set
size. For this simulation, the proportion of information searched
decreased from a high level of .89 for the 2-alternative set to .45
for the 7-alternative set, down to a low level of .25 for the
12-alternative set. The basic trend for the direction of search is to
increase the proportion of within-attribute comparisons as the
choice set size increases. For this simulation, the direction of
search index changed from —.38 for the 2-alternative set, to —.79
for the 7-alternative set, and to —.89 for the 12-alternative choice
set. This agrees qualitatively with the basic pattern of findings
from previous research.

Summary of Empirical Applications

Thus far we have shown that MDFT provides a uniform and
comprehensive account of the critical empirical findings from
multialternative preferential choice studies. This includes explana-
tions for similarity effects, attraction effects, compromise effects,
and their subtle interactions. Most important, as shown in Fig-

ure 14, all three of these basic effects can be explained by using a
common set of parameters. A closer examination of Figure 14
yields some interesting relations between the theoretical parame-
ters and the occurrence of the three basic effects. First, we find that
relatively low lateral inhibition and residual SD facilitate the
similarity effect, whereas relatively high lateral inhibition and
residual SD facilitate the compromise effect. High inhibition also
facilitates the attraction effect, but the residual SD plays a minor
role. This leads to an interesting prediction concerning individual
differences: Individuals showing the strongest similarity effect
may evince weaker compromise effects and vice versa. Thus, there
should be a negative correlation between attraction effects and
similarity effects as opposed to a positive correlation between the
attraction and compromise effects. Confirmatory results support-
ing these individual difference predictions have been reported by
Wedell (1993).

MDFEFT also makes interesting predictions regarding the dynam-
ical aspects of the decision process. As can be seen in Figures 8
and 12, a directly testable prediction derived from the present
theory is that both the attraction effect and the compromise effect
should be attenuated by time pressure. In contrast, the similarity
effect is not expected to decrease under time pressure, and instead
this effect should remain fairly constant across time. Thus MDFT
predicts qualitatively different effects of time pressure on choice
probability for the three major findings. Although a formal test of
this hypothesis remains to be performed, two separate lines of
preliminary evidence converge to support the general idea that
attraction and compromise effects increase with longer delibera-
tion times. First, Wedell (1993) found attraction effects to be
positively correlated with choice response time. Second, Simonson
(1989) reported that attraction effects are enhanced when partici-
pants are motivated to carefully deliberate about their decisions.

Finally, we showed how MDFT assimilates findings regarding
the predecisional search processes used to filter a large set of
options down to a smaller competitive set. By using both an upper
acceptance boundary and a lower rejection boundary, MDFT can
emulate findings regarding predecisional search processes reported
in the literature. Specifically, at the beginning of the decision-
making process, when a large number of alternatives are being
considered, a simple elimination process quickly screens out op-
tions that are unacceptable on the first couple of attributes. Later,
when only a few competitive options remain after this initial
screening, a more deliberative compensatory process makes the
final selection. The last section compares MDFT with earlier
theories of multialternative preferential choice.

Comparisons With Other Models

Decision Theories

During the past 20 years, decision theorists have made signifi-
cant theoretical progress toward the development of theories for
preferential choice. Some models were successful for explaining
the similarity effect (Candel, 1997; Edgell & Geisler, 1980;
Mellers & Biagini, 1994; Tversky, 1972; see also De Soete et al.,
1989); others were successful for explaining the attraction effect
(Ariely & Wallsten, 1995; Dhar & Glazer, 1996) or the compro-
mise effect (Tversky & Simonson, 1993). However, a common
formal theoretical explanation for all three pivotal effects has
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eluded past researchers. Table 3 provides a comparison among
models.

On the one hand, models specifically designed to explain sim-
ilarity effects cannot explain violations of regularity resulting from
the attraction effect. On the other hand, models specifically de-
signed to explain attraction effects cannot explain violations of
independence from irrelevant alternatives produced by the simi-
larity effect. As we showed in the previous sections, MDFT
succeeds in providing a coherent explanation for all three classes
of phenomena as well as the subtle interactions among these
effects. For example, MDFT not only provides an explanation of
the main effect for the dominated decoy, but also accounts for
differences between range and frequency decoys and the positions
of inferior decoys on the attraction effect.

Previous Artificial Neural Networks

Several artificial neural network models of decision making
have recently been proposed that are also dynamic in nature. Leven
and Levine (1996) proposed a multiattribute neural network deci-
sion model to explain consumer choice behavior; however, it was
not applied to any of the major empirical findings on multialter-
native preferential choice discussed here. Another dynamic model
proposed by Usher and Zakay (1993) was designed to implement
an EBA choice process using a neural network framework. It
provides an explanation for the similarity effect and for some
search process results. However, like the EBA model, no expla-
nations for the attraction effect and the compromise effect follow
from this theory.

Sequential Sampling Models

Decision field theory follows a growing movement in cognitive
psychology to model decision processes according to a sequential
sampling process (Ashby, 2000; R. Heath, 1984; Link, 1992,
Nosofksy & Palmeri, 1997; Ratcliff, 1978; Ratliff & Rouder, 1998;
Ratcliff, Van Zandt, & McKoon, 1999; Smith, 1995). However,
the present formulation provides a couple of innovations to this
earlier work. One innovation is that decision field theory accumu-
lates valences (comparative affective evaluations) whereas the
earlier models accumulated evidence (likelihoods of competing
hypotheses). A second major innovation is the incorporation of the
principle of lateral inhibition to define the feedback matrix S in the
linear stochastic dynamic system (see Equation 2).”

Table 3
Comparison of Models and Major Phenomena
Phenomena
Search
Theory Similarity Attraction Compromise process
Context-dependent
advantage model No Yes Yes No
Elimination-by-aspects
model Yes No No Yes
Thurstone model Yes No No No
Earlier neural network Yes No No Yes
Decision field Yes Yes Yes Yes

Implications for Future Research

MDFT not only provides a more complete explanation of the
major findings from past research on multialternative choice than
previous theories, but also generates new testable predictions and
provides new directions for research. For example, MDFT predicts
that the compromise effect should gradually turn into a similarity
effect as the compromise option is moved along the diagonal
toward one of the extreme options, as it is in Figure 10 (analogous
to the similarity—attraction interactions shown in Table 2). Another
interesting prediction is that the attraction effect results from a
buildup of lateral inhibition and therefore should take time to build
up. Although preliminary evidence supports the latter hypothesis
(Simonson, 1989; Wedell, 1993), more rigorous tests are required
to rule out possible explanations based on random guessing under
time pressure. We are currently beginning a new program of
research to examine these and other predictions from MDFT.
Several experimental tests of predictions derived from the original
version of decision field theory have recently appeared, and the
results were found to be in agreement with theory (see Diederich
& Busemeyer, 1999; Dror, Busemeyer, & Basola, 1999). Our goal
for the present article is to lay down the basic theoretical founda-
tion for future model tests and model comparisons.?

Conclusion

We have recast decision field theory (Busemeyer & Townsend,
1993) into a connectionist framework and extended it to encom-
pass multialternative decision making. Two earlier important the-
ories (weighted additive utility; Thurstone choice theory) were
shown to be derivable as special cases of our theory. The central
thrust of the study then probed MDFT relative to three essential
experimental findings concerning multichoice situations: the sim-
ilarity effect, the attraction effect, and the compromise effect.
MDEFT is the only formal and quantitatively specified theory that
has successfully explained all three effects; other future testable
predictions were considered. In addition, we demonstrated that
MDFT can simulate behavior associated with Tversky’s (1972)
EBA process and we discussed the critical time-oriented facets and
potential predictions of MDFT. Finally, we compared MDFT with
other multialternative choice models, in particular with those pos-
sessing artificial neural network interpretations. Decision field
theory is based on a simple set of theoretical assumptions, all of
them founded on long-standing psychological principles in moti-
vation, decision making, and information processing. Over the past
several years, this theory has begun to demonstrate itself capable
of explaining a broad spectrum of classical results and making new
testable predictions, many of which have been investigated and

7 Ashby (1989) also mentioned the use of lateral inhibition in his
stochastic version of general recognition theory.

8 Unfortunately most of the data from previous experiments are not
suitable for quantitative tests because of the small number of experimental
conditions and the small sample sizes within each condition. For this
reason we have considered only the qualitative predictions of MDFT.
Quantitative tests of decision field theory have been performed in other
applications (e.g., Busemeyer & Townsend, 1993; Dror et al., 1999), and
new experiments are underway to provide both qualitative as well as
quantitative tests of time pressure and attraction effects.
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confirmed. The present work suggests that major multialternative
choice phenomena naturally ensue from the extended theory.
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Appendix A

Derivations for Content-Dependent Advantage Model

This appendix proves that the context-dependent advantage model de-
veloped by Tversky and Simonson (1993) cannot simultaneously explain
the similarity effect and the compromise effect. Tversky and Simonson
never attempted to apply the model to the similarity effect, although it
clearly can be applied in the same manner as the compromise effect.

Their model requires the definition of four parameters: @ = the unique
advantage of option A over B; B = the unique advantage of option B over
A; vy = unique advantage of option A over S; and A = the unique
advantage of option S over A. Tversky and Simonson (1993) based all their
derivations on the case where a = (3, so that according to their model, the
options A and B are chosen equally often in the binary case.

Following Tversky and Simonson’s (1993) derivation for the compro-
mise effect, the similar option S, as shown in Figure 1, has a unique
advantage, A, over A, which is equal to the unique advantage, vy, of A over
S, so that y = A = e. The main difference between the compromise and
similarity effect is that for the latter, € is an arbitrarily small magnitude.
Applying their formulas to the similarity case yields

V(A)

o Y
a+0[a+8(ﬁ)+v+8(/\)]

23 €
a+9|:m+e+—a(€):l,

it

V(B) B Bty ]

B+9[B+8(a)+B+y+6(a+/\)

_ o a+ e
=até a+8(a)+a+e+6(a+e) ’

In the above formulas, 6 is an unknown context weight parameter, and
8(x) > x is assumed to be a convex function. Strict convexity was required
by Tversky and Simonson (1993, p. 1187) to explain the compromise
effect.

To explain the similarity effect, it is necessary to have V(B) > V(A). But
this is impossible if 8(x) is strictly convex. To see this, note that if 8(x) is
strictly convex, then for any a > 0, 8(a) > aé'(0), where 8'(0) is the
derivative of 8 evaluated at zero. This implies that as € — 0, 8(a + e)/(a +
€) > 8(e)/e. But the last inequality implies that

a+ e €
a+e+8(a+e)<e+8(e)’

(Al)

and finally, this inequality (Equation A1) implies V(A) > V(B), contrary to
the similarity effect. For example, consider the commonly used case where
8(x) = x® is a power function and define n = 1 + (¢a).

8 8 + 8
(a + €) >e — (,na)ﬁ~l > 65_1 s (‘fla) E_ (Cl E)

na € a+e€

&
> V(A) > V(B).

For the linear case, it is easy to show that 8(x) = 8x — V(A) = V(B), again
contrary to the desired empirical finding for the similarity effect, V(B) >
V(A). In fact, the inequality (Equation A1) is exactly the same inequality
that must be satisfied to produce the compromise effect (see Tversky and
Simonson, 1993, p. 1187), hence their need for imposing the convexity
property. But this same property rules out the possibility of explaining the
similarity effect.

Appendix B

Derivations for Decision Field Theory

This appendix derives the mathematical formula used to compute the
probabilities for Equation 3. The valence vector defined by Equation 1 is
a linear transformation of the stochastic weight vector, W(z). This weight
vector is assumed to change across time according to a stationary stochastic
process. The stationarity assumption for the weights implies that the
valence vector (V) is also a stationary stochastic process with mean E[V(2)]
= E[CM,W (1) + €] = CM,E[W,(1)] + E[e()] = CM,w; + 0= p
and variance~covariance matrix at each time point given by Cov[V(r)] =
Cov[CM\W, (1) + e()] = CM,Cov[W (HIMC' + Covie(®)] =
CM,¥M(C’ + ¢ = @, where ¥ = Covi{W ()] = E[(W,(®) — w (W ()
— w,)’] is the variance—covariance matrix for the primary weights, and ¢
= Covie(r)] = E[e(D)e(?)'] is the variance—covariance matrix of the resid-
uals. Analogous to a factor analytic model (cf. Takane, 1989), the residuals
are assumed to be uncorrelated with the primary dimensions and uncorre-
lated with each other. This implies that ¢ is a diagonal matrix.

The effects of the feedback matrix on the evolution of preference over
time can be seen more clearly by expanding Equation 2:

P() = 3,20,:8 V(2 — j) + S'P(0). (B1)

This equation shows that the current preference state can be viewed as a
weighted sum of the previous input valences. The weight placed on each

previous input is determined by the feedback matrix raised to a power,
where the power equals the lag between the current state and the previous
input. For this system to be stable, the eigenvalues of the feedback matrix
must be less than one in magnitude. In this case, the effect of the feedback
matrix decays toward zero as the lag increases in value. Taking expecta-
tions and simplifying produces the mean preference over time:

&) = EPH]=1-8)'I1~- S+ SP(0). (B2)

For stable systems, as t —> «, then &r) — (I — S)™'u, which is a simple
formula for analyzing the effects of the feedback matrix on the asymptotic
mean preference state. If weights are identically and independently distrib-
uted over time (see Footnote 1), then the variance—covariance matrix of the
preference state evolves over time according to €2(f) = cov[P(®)] =
E{(B() ~ E[PODEPE) ~ EPOD'} = 3, SO

On the basis of the multivariate central limit theorem, the distribution of
the preference states P(f) converges to the multivariate normal distribution
as the number of steps (#) in Equation B1 becomes large. If the time period
between steps is small, then this convergence will occur very rapidly.
Given that P(s) is distributed according to the multivariate normal distri-
bution with mean &(f) and variance-covariance matrix €X(r), then the
probability of choosing A from the set {A, B, C} at fixed time point ¢ is:
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Pr[P,(¢) — Pg(t) > 0 and P,(r) — Pc(1) > 0]
= f exp[—(X — I)'A™Y(X — I)/2V/(27|A]*)dX, (B3)
X>0

where X = [P,(8) — Pg(t), PA(f) — Pc(®]', T = L&D, A = LQ(L’ and

1 -1 0
L= [ 1 0 -1 ]
Techniques for integrating Equation B3 are described in Ashby (1992, p.
26). Equation B3 is the mathematical formula used to compute the prob-
abilities in Equation 3.
For binary choices, L = [1 —1],and I’ = L&), A = LQ@)L’ are both
scalars: I represents the mean difference in preference, and A represents

the variance of this difference. For binary choices, Equation B3 reduces to
a simple integration of the unidimensional normal distribution. The binary
choice probability of choosing A over B at time ¢ is Pr[P () — Pg(2) > 0]
= F(I''\/A), where F(x) is the standard cumulative normal distribution
function.

Parameters used for Figures 4, 7, and 8: The attention weights for the
two primary attributes were assumed to fluctuate according to a simple
Bernoulli process with probabilities 7, = .43 and 7, = .45. Based on this
assumption, we derive w, = E[W(1)] = [wg wgol', and ¥ = diag(w;) —
w,w}. The values for the M, matrix described in the text were then inserted
to'compute . = CM;w, and ® = CM, WM C’ + ¢, where ¢ was initially
set to ¢ = diag(.1, .1) for Figures 4 and 7. But it was changed to ¢ =
diag(10, 10) for Figure 8 to examine the robustness of the attraction effect
with respect to the residual variance. These matrices were then inserted into
Equation B3 to produce the predictions shown in Figures 4, 7, and 8.

Appendix C

Binary Choice Probabilities

This appendix describes how model simulations were performed to
compute predictions for the internally controlled stopping rule. At each
time step the preference vector for each alternative was updated using the
C matrix for binary choice given in the text and the following S matrix in

Equation 2:
95 0
§= [ 0 .95]'

Attention shifted between dimensions in that at each time step, with a
probability of .5, a column of the M matrix was chosen for use in updating
the preference vector. Once a column was chosen, an error vector distrib-
uted N ~ (0, 7) was added to represent momentary fluctuations in value.
The simulation continued until the preference for one option reached an
upper boundary of 60. The option that reached the boundary first was the
option chosen for that simulated subject. One thousand subjects were
simulated for each effect. These same procedures, with the same parame-
ters, were used in all trinary simulations with the exception of the M, C,
and S matrices.

Similarity
Simulations were run exactly as with the binary case discussed above

except with different M, C, and S matrices. The following M matrix was
used:

E Q
282 122 A
M, = { 29 11 } Similar
10 30 B

This matrix was chosen such that the values for A and B led to a slight
advantage for choosing A over B in the binary case. The C matrix was the
same as presented in the text and the following S matrix was used:

A S B
95 -.09 -—-.0017 A
S= [—.09 95 —.003] S
-.001 -.003 .95 B

Values in this matrix were chosen to take into account the relative positions
of the options in the multiattribute evaluation space. For example, the
lateral inhibition between A and S is greater than A and B because it is
closer in space (see Figure 1).

Attraction Effect

Simulations for the attraction effect were exactly the same as for the
similarity effect except for the differences in the M and S matrices. The M
matrices were chosen such that there was a range of probabilities of
choosing A over B in the binary case.

PrlAl{A, B}] = .25 Pr[A|{A, B}l =.5 Pr[A[{A, B}]=.75

E Q E Q E Q
22 18 22 18 23 18

M, = [17.6 18] M, = [17.6 18] M, = [18.4 18]_
31 10 3010 30 10

The S matrices for the range and frequency decoys were presented in the
text. The rationale for the values in these matrices is given in the text.

Compromise Effect

Simulations for the compromise effect were exactly the same as the
decoy effect with different M and S matrices.

E Q A C B

15 257 A 95 —-.05 -.0017 A
M= |:20 20:| C 8= [—.05 95 -.05 C .

25 15] B -.001 -.05 .95 B

Values in the M matrix were chosen to coincide with their positions in the
multiattribute evaluation space. The S matrix was chosen to have equal
lateral inhibition between A and C and B and C also due to their positions
in the multiattribute evaluation space.

(Appendix continues)
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Search Variability

Values for the M matrix were chosen such that each option had 12
attributes, 4 of which had a high value, 4 medium, and 4 low (1, 0, —1,
respectively). Attribute values were ordered such that no option dominated
another. Simulations were run separately for one of three choice set
sizes: 2, 7, or 12. Hence, for the 12-option set, the original M matrix was
a 12 (number of options) X 12 (number of attributes) matrix with each row
representing values across dimensions for each alternative. For the 7- and
2-option sets the M matrix was constructed similarly and were of size
7 X 12 and 2 X 12, respectively.

Because some options are eliminated from the choice set during delib-
eration, the size of all of the matrices changed. The S matrix consisted of
a number of options remaining X number of options remaining diagonal
matrix with .95 on the diagonal and zeros everywhere else. The C matrix

was constructed to compare each alternative with the average of all other
alternatives.

The upper preference boundary to choose an option was set at 50. The
lower boundary to discard an option was set at —30, —20, — 10 for the 2-,
7-, and 12-option sets, respectively. Attention shifted from one dimension
to another in that on each trial there was a 95% probability that the same
dimension would be used at the next time step and a 5% probability of
moving to the next dimension. An error component of N ~ (0, 7) was
added to the column of the M matrix chosen on each trial. Simulations
were run for each subject until an option crossed the upper boundary, all
but one option was discarded, or all 12 dimensions were cycled through.
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