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Abstract

Psychology is one of the most recent sciences to issue from the mother-tree of philosophy.
| One of the greatest challenges is that of formulating theories and methodologies that move
the field toward theoretical structures that are not only sufficient to explain and predict
phenomena but, in some vital sense, necessary for those purposes. Mathematical modeling is
perhaps the most promising general strategy, but even under that aegis, the physical
sciences have labored toward that end. The present chapter begins by outfining the roots of
our approach in 19th century physics, physiology, and psychology. Then, we witness the
renaissance of goals in the 1960s, which were envisioned but not usually realizable in 19th
century science and methodology. It could be contended that it is impossible to know the
full story of what can be learned through scientific method in the absence of what cannot
be known. This precept brings us into the slough of model mimicry, wherein even
diametrically opposed physical or psychological concepts can be mathematically equivalent
within specified observational theatres! Discussion of examples from close to half a century of
research illustrate what we conceive of as unfortunate missteps from the psychological
literature as well as what has been learned through careful application of the attendant
principles. We conclude with a statement concerning ongoing expansion of our body of
approaches and what we might expect in the future, '
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From Past to Future: Main Currents in the
Evolution of Reaction Time as a Tool in the
Study of Human Information Processing

If time has a history (Hawking, 1988), the
timing of mental events certainly does. The idea
that human sensations, feelings, or thoughts occur
in real time seemed preposterous less than two
centuries ago. When the idea has fnally gained
traction, its gradual acceptance in psychology has
often been accompanied by much rancor that
continued well beyond the development of the
fist attempts ac measurement. After some carly

progress that had been made in harnessing latency
or reaction time (RT) to the study of psychological
processes, Titchener (1903, p. 363} was sdll
pondering whether “we have any right to speak of
the ‘duration’ of mental processes.” Putting the term
duration in inverted commas indicates the recent
origin of usage of the term as well as Titchener’s own
doubts abour its validity or serviceability.

Thirty years later, Robert Sessions Woodworth
in his celebrared Fxperimental Psychology argued
apainst acceptance of the first method to use
reaction time. In a section poignantly cited,
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“Discarding the subtraction method” (Woodworth
1938, p. 309), Woodworth expressed broader and
deep seated reservations, observing that because
“we cannot break up the reaction into successive
acts and obtain the time for each act, of what use
is reaction time?” Dven more recent is Johnsom's
(1955, p. 5) assertion that, “The reaction-time
experiment suggests a method for the analysis of
mental processes that turned out to be unworkable.”

An onerous history granted, the use of RT is
firmly established in modern cognitive psychology
not least due to the general conceptual framework
provided by the domain known as the information-
processing approach. Within this framework, RT
is used in a systematic, theoretically guided fashion
in the quest to isolate the underlying processes and
their interactions activated by a given experimental
task (cf. Laming 1968; Luce 1986; Townsend and
Ashby 1983; Welford 1980).

Nevertheless, we would be remiss if we did not
examine, if in passing, the essence of Woodworth’s
reasoning. Woodworth’s concerns hark back w©
the forceful argument on the continuity of con-
sciousness offered by William James in his seminal
Principles of Psychology (see in pardicular, James
1890, Vol. 1, p. 244). In the chapter on the stream
of thought, James contends that, due to its absolute
continuity, thought or consciousness cannot be
divided up for analysis. His attack is directed against
the possibility of introspecting minute mental
experiences, but the objection is equally cogent
with respect to RT. When obtaining a value of RT,
one measures the duration between two markers in
time, usually that between some specified signal and
the observers response. The RT is taken then to
represent the time consumed by an internal process
needed to perform 2 mental tasl. However, if
mental processes are not amenable to partition, any
pair of markers must be considered arbitrary. On a
deeper level, the situation is a replica or subspecies
of the relationship between nature and language
as discussed by Friedrich Nietzsche (1873). Nature
might well comprise a continuous whole, but
human language (used to describe nature) is always
discrete. How does one treat a continuous variable
with discrete tools? Without dwelling on this issue
in any depth, the upshot is clear. A fundamental, yet
heretofore unarticulated assumption underlying all
RT-based models, serial or parallel, is this: Natural
mental functioning can be divided into separate,
psychologically meaningful acts.

Returning to history, why did the idea thar
mental acts occur in real, hence measurable, time
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seem so incredible less than 200 years ago? The
physiology of the human nervous system had made
startling advances just around that time, buc for
many centuries the main thrust of attempts to
understand the system along with che attendant
sensations fell under the rubric of “vitalism.”
Viealism is che doctrine that there is a fundamental
difference between living organisms and noaliving
matter because the former entail something that is
missing from the latter, Pinpointing just what this
“something” was has proved elusive, yet the doctrine
enjoyed widespread influence from antiquity {the
Greek anatomist Galen held that viral spirits are
necessary for life) ro the 19th century (for all
his great contributions to physiology. the towering
figure of Johannes Miiller subscribed ro vitalism) to
our own time (Freud’s “psychic energy,” “emerging
property,” or even “mind” iwself come ro mind).
Vitalism is best understood as opposition to the
Carresian extension of mechanistic explanations to
biology (Bechtel and Richardson 1998; Rakover
2007). It is on this background of the strong
influence of vitalism that researchers at the time
believed thar nerve conduction was instantanecus
(in the order of the speed of light o faster) and that,

in any rate, it was too fast to be measured.

Hermann von Helmboltz's Measurement of
the Speed of the Nerve Impulse

Therefore, Hermann von Helmholz (1821-
1894) along with his fellow students at Johannes
Miiller’s Berlin Institute of Physiology had to
summon their best judgment and blood (signing
their antivitalism oath) to rebuff their teacher, and
espouse a strictly mechanistic "positicn.- Under the
circumstances, it was 2 bold move on- the part of
Helmholtz and his peers to consider the moving
nerve impulse as (merely) an event in space-time
on a par with, say, thar of a moving locomotive.
Devising an ingenious method for measuring time,
Helmholtz proceeded to measure the speed of the
former. He stimulated a motor nerve in a frogs leg
and found that the latency of the muscular response
depended on the distance of the stimulation from
the muscle: the smaller the distance, the faster
the response. Helmholiz's calculations showed that
the propagation of the impulse down the nerve
was surprisingly slow, between 25 to 43 meters 2
second. Regardless of the value, it became evident
that the speed of nerve conduction was finite and
measurable! More boldly yet, Helmholtz turned
to humans, asking participants to push a button
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when they felt stimulation in their leg. Predictably
enough, people reacted to stimulation in the toe
slower than to stimulation in the thigh. Helmholtz
estimated the speed of nerve conduction in humans
to be between 43 and 150 meters per second. The
large range is notable, attesting to considerable
variability. It was this variability, within-individuals
as well as between-individuals, that discouraged
Helmholtz from further pursuing RT research as a
reliable means of psychological investigation.

'The last point is also notable because individual
differences was the subject of a now-famous inci-
dent at the Greenwich ohsetvatory, which occurred
half a century before Helmholtzs measurements.
Assistant astronomer David Kinnebrook was re-
lieved of his job by his superior, Nevil Maskelyn,
due to disagreement in reading the time that
a star crossed the hairdine in a telescope. The
superior found that his assistant’s observations were
a fraction of a second longer than his own. Twenty
years later, this lictle-noticed incident (at the time)
came to the attention of the German astronomer
E W. Bessel, who started to compare transit times
by various astronomers. This first RT study fevealed
that all astcronomers differed in their recordings. In
order to cancel out individual variation from the
astronomic calculations, Bessel set out to construct
“personal equations” as a means to correct or
equate differences among observers. Notice that
the concept of “personal equation” assumes small
(to nil) intra-individual variability in tandem with
stable interindividual differences. Neither notion
proved to be correct as Helmholtz witnessed with
his observers. It turns out that variability, whether
of intra- or inter-individual species, is a fixture
of RT measurement. It is at this juncrure that
models developed within the generic {ramework
of human information processing become truly
valuable, actempring to disentangle the various
sources of RT variability.

Studies of Reaction Time in Wundt's
Laboratory: Moving from the Periphery to
the Center

Note that for all his pioneering conttibution,
Helmholizs measurements were restricted to the
periphery of the nervous system, to sensory and
Mmotor nerves transmitting impulses toward or
from the brain (Fancher 1990). Even this result,
a5 we recounted, was achieved after rravelling
4 torturous road. Nevertheless, barely a decade
after Helmholtzs measurements in 1850, the
foﬂowing intriguing question was posed (separately)

by Wilhem Wundt (1832-1920) and Franciscus
Donders (1818-1889). Could RT measurement
be refined to gauge duration of central processes,
presumably reflecting mental activity in the brain
itself?

Wundt approached the question experimentally
by probing the simultaneity of stimulus appearance
in the conscious mind. Do stimuli presented at
exactly the same (physical) time evoke similarly
simultancous sensations? In a simple experiment
performed in his home n 1861, Wundt attached
a calibrated scale to the end of the pendulum of his
clock so chat pendulum’s position at any time could
be determined with precision. A needle fastened to
the pendulum perpendicularly ar its middle would
strike a bell at the very instant that the pendulum
reached a predefined position on the scale. Using
this makeshift (yet accurate for the time) instrument
(Figure 4.1), Wundt was observing his own mind:
Hearing the sound of the bell, Wundr did #et
petceive the pendulum to be in the predetermined
posidon bur always away from there. Calculation
based on the perceived distance of the pendulum
from its original posidon showed the perceived
time difference to be at around one-tenth of a
second. Inevitably, Wundc concluded, people do
not consciously experience the visual and auditory
stimuli simultaneously, despite the fact char these
stimuli occur at the same time.

Encouraged by such data, Wundt subsequently
artempied to measure specific central processes. A
favorite topic was “apperception,” an early term for
what is now known as attention. Wundt found
that the RT to a given stimulus was shorter by
one-tenth of a second if the observer concentrated
on the response rather than on the stimulus. The

Fig. 4.1 Schematic of Wundt’s thought meter.
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reason is that one has first to perceive the stimulus
and then to apperceive i, that is, to decide
whether it is the appropriate one for responding.
When focusing on the response, the second of
these processes is gratuitons. Consequencly, Wunde
proposed that apperception takes about one-tenth
of a second. Regardless of the particular results,
the significance of Wundts early foray into RT
measurement lies in his bold thrust o probe the
duration of mental processes of consequence to
cognitive science and everyday life alike. Cognizant
of its potential, Wundt’s home apparatus has been
depicted as a “thought meter,” and the title of his
own report (including subsequent dara) aptly read,
“Die Geschwindigkeir des Gedankens” (The speed of
thoughts; Wundt 1892).

Important work in Wundt laboratory was car-
tied out on a related subject, the number of stimuli
noticed simultaneously during a short glance. James
McKeen Cactell {1860-1944), Wundts American
student and assistant, first employed RT in the
study of the visual pan of attention or span of ap-
prehension. However, a true pioneer in this domain
was the Scottish philosopher, Sir William Hamil-
ton, whose observations are reported in a posthu-
mous book published in 1859. Hamilton spread
out matbles on the ground and concluded that, on
average, the span of visual attention is limited to
6-7 items. However, if the marbles are arranged in
groups {of say two, three, or four marbles a group)
the person can comprehend many more marbles
because the mind considers each group as a unic.

These results and conclusions anticipated those
of George Miller a century later in his famous article
on the “magical number seven” and on the effects of
“chunking” (Miller, 1956). The power of grouping
was expounded by Cattell himself who found that
whole words could replace single unrelated letters,
leaving invariant the number of units noticed
within the span. Modern studies on the span of
attention use short exposure times (at around 50
ms) in order to avoid eye movements and counting,
As a result, observers acrually report the contents
of their short-term or “iconic” memory. George
Sperling (1960), reviving interest in the subject
in his groundbreaking studies on the information
contained in brief visual presentations, concluded
that the span was much larger than previously
thoughr {in the order of 12-16 letters), but that it
was also short lived. The very report by the observer
can conceal the true size of the span; larger estimates
are found when the deleterious effects of reporting
are circumvented.

We susely have come a long way from Hamilton's
informal surmises. Nevertheless, his observations
brought to the fore the idea of limited capacity
(resources or attention) and even the idea of parallel
processing. Murray (1988, p. 159), ever the
leen reader, concluded that “Hamilton perceived
consciousness as a kind of receptacle of limited
capacity.” Needless to add, capacity and parallel
processing are key concepts in the current approach
lknown as human information processing.

Donders’ Complication Experiment and
Method of Subtraction

We already mentioned Franciscus Donders, the
true pioncer of RT measurement in psychology.
This Dutch physiologist {founder of moedern oph-
thalmology among sundry achievements) developed
the first influential, hence lasting procedure for
measuring the duration of specific mental processes.
Donders devised an experimental setup known
as the complication experiment with an assorted
method of RT measurement called the method of
subtraction. The idea was to present tasks of increas-
ing complexity and to subtract then the respective
RTs in order to identify the duration of the added
processes. The technique is best illustrated by the
procedures used by Donders himself (Donders,
1868; we follow Murray’s 1988 depiction). In one
variation, the a-method, a sound such as 47 is
presented by the experimenter and the observer
reproduces it orally as quickly as possible (one
should note that Donders was the first experimenter
to use human [his own] voice in RT studies).
The a-task is & simple reaction time experiment,
recording the time it takes the, observer to react
to a predetermined stimufus by a predetermined
response. In the b-method, one of several sounds is
presented on a trial, and the observer repeats the
sound as fast as possible. This variation is dubbed
choice reaction time: Several different stimuli are
presented and the observer responds to each of
them differently. In the c-method, scveral sounds
are given again, but the observer imitares only
one of them and remains silent when the others
are presented (this variation is now known as
the go/no-go procedure). The differences between
the respective RTs reflect the duration of the
psychological processes involved. For example, the
RT for the b-procedure entails both discrimination
{or identification) of the stimulus presented and the
selection of the appropriate response, whereas that
for the c-procedure entails merely discrimination
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Fig. 4.2 Hllustration of the complication experiment and analysis
by the method of subtraction. Top: A simple RT experiment (a
single predetermined response made to a single predetermined
stimulus) is complicated into a choice RT experiment (two
different stimuli with a different response made o each).
Bottom: The time it rakes to perform the menral act of choice
is estimared by subtractng the mean RT of the simple RT
experiment from the mean RT of the cheice RT experiment.

(o recognition, see Luce, 1986, p. 213). The mean
difference (c—a) was taken by Donders to measure
the duration of recogniton, whereas that of (b—c¢)
estimated the time consumed by the need to malke
a choice between responses (see Figure 4.2 for an
outline of the Donders experiment and for the [ogic
of the method of subtraction).

In the scheme developed by Donders, there
is a chain of discrete nonoverlapping processing
systems. The duradon of each process is measur-
able, assuming thar each added experimental task
uniquely taps one and only one of the processing
systems. If the assumptions hold, the procedure
succeeds in inferring the duration and eventually
the attendant architecture of the psychological
systern under test. Consequently, the idea of
subtraction has exerted a profound influence on RT
theory and experimentation. Townsend and Ashby
(1983) paid well-deserved homage to Donders by
designating psychelogical processes carried out in a
serial fashion (i.c., sequential and without overlap
In processing time} as Dondersian systems. This
much granted, closer serutiny of the method (in
particular, its underlying assumptions) uncovered
several problems, so that the method has not been
wholcheartedly accepted by students of RT. The

main criticisms are easily summarized because they
are interconnected in final analysis.

First, the experimental data collected by different
investigators or by an individual investigator at
different times proved extremely variable. For
example, Donders (1868), Laming (1968), and
Snodgrass, Luce, & Gealanter {1967) reported
vastly different RTs for (c—a) and {b—c). Over and
above the variability, the order of the differences is
not preserved: Donders found (b—c) longer than
(c—a), but those subsequent investigators found
the opposite pattern. Wundt, an early champion
of the method, was so discouraged by the large
intra-individual variability chat he abandoned his
RT studies altogether.

Second, the method requires that the added
experimental task has no influence on any of the
other tasks. The assumption of “pure insertion”
(Sternberg, 1969a,b) asserts that the previous pro-
cesses unfold in time precisely in the same fashion
regardless of whether another process is inserted
into the chain. If pure insertion is impossible in
general or does not hold in particular cases, the
assumptions of additivity and independence of the
processes are also compromised. To compound
the problem, the assumption of pute insertion is
untestable with mean staristics although it might be
with distributional statistics {Ashby & Townsend,
1980), The issue is not fully settled (cf. Luce, 1986,
p- 215}, and it is moot whether it can be fully setted
with any mathematical or statistical test.

The third criticism is even more fundamental. It’

concerns the relationship between the experimental
task and the unobservable psychological process or
subprocesses that the task is supposed to tap. It is
not prima facte clear that by calling a task “response
choice/selection” or “stimulus discrimination” the
underlying psychological process is that of choice or
discrimination. It is not even clear that the task taps
a single process, excluding all sorts of subprocesses.

The raison d'etre of the complication experiment
is minimum complication, so that a single well-
defined process is probed with each additon.
This minimal-addition- or single-process principle
is not readily testable {certainly not at the level
of the mean) and it is even meore difficult to
satisfy in experimental practice. After all, how
can one decide that the added task comprised
the smallest complication possible (Kiilpe, 1895;
Stetnberg, 1969a,b). Symptoms of the problem
have recurrently surfaced in the century following
the Donders experiment. Where Donders called
a given task “discrimination,” Wundt called the
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same task, “cognition.” Donders’ c-task was con-
ceived to tap stimulus recognition, but already
in 1886 Cattell questioned its validicy, arguing
thar the task enrails processes beyond identification
or recognition. More recently, Welford (1980),
echoing Cattell's concerns, concluded that the
difference between the b-task (originally thought
to tap response selection) and the c-task is one of
degree and that both entail choice of the response.
Wundt, acutely aware of the problem, conceived
a new task, the d-procedure (meant to be a pure
measure of recognition), to no avail. More than
linguistic indeterminism is at stake. G. A. Smith
(1977), for one, obtained data showing choice to be
faster than recognition! How does one make choices
among stimuli that one does not recognize? In the
absence of a definite task-process association and
theory, we cannot know with certainty the identity
and order of the pertinent psychological processes.
Given the problems, the method of subtraction was
out of favor for many years with scudents of RT.
The succeeding section will bring us into the
modern era of cognitive research. Subsequent
sections will revisit many of the concepts with more
quantitative detail, but still with emphasis on a

friendly style.

Saul Sternberg’s Revival of the Donders
Project: Inaugurating the Modern Study of
Human Information Processing

Reminiscent of the tale of Sleeping Beauty,
Dondersian procedures were lying dormanc for
over a century. The prince:investigator reviving
the technique was Saul Sternberg (1966, 1969a,b),
and the magic kiss awakening renewed interest was
his memory scan experiment. The participants are
first shown a number of items. Then, they decide
whether a test item was or was not present in the
set just shown. Prototypical results are given in
Figure 4.3. Two features of the data are noteworthy.
First, RT is a lincar function with a positive slope
of the size of the memory set shown. Adding a
single member to the memory set increases RT
by the same constant amount. Second, targets
and foils produce the same increment in RT, so
that the slope of the function is the same for yes
and for no responses (in Figure 4.3, the intercept,
reflecting stimulus encoding, base and residual
time, incidentally is also the same; however, the
important feature is che parallelism of the target-
present and targei-absent functions). Sternberg
interpreted the linear function with the positive
slope to reflect serial processing such that the test
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O negarive Tesponse

400 —— line of best fit

o 1 2 3 4 5 6

size of the positive set

Fig. 4.3 Pratorypical resuls of Sternbergs memory scan
experiment.

item is compared with the memory representation
of each of the items in the positive set — one item
a time. He interpreted the parallelism of the slopes
to mean that the search continues until the entire
memory is exhausted even if an early item in the
positive set matches the probe stimulus. Sternberg’s
interpretation of his data is now known as the
standard serial exbaustive search model. If search
ceases as soon as a probe item is located, the process
is said to self-terminate. Sternbergs original {1966)
analyses were stronger than many of the scores of
studies that followed, due not only to invoking
several control conditions but also in helping to rule
out an important class of parallel models. Again, we
will discuss this matter as well as other topics in this
section in more quantitative detail subsequently.
Sternberg’s conclusions seem compelling, but, as
subsequent research has revealed, neither is forced
by the data. The positive slope appears o have all
the earmarks of serial processing, but 2 moment
of reflection suffices to show that the same result
follows in a natural fashion from parallel processing.
Think of horse races (actual ones, not modeling
metaphors) with a different number of hotses in
each race. The referee reports back to the organizer
once each race is over (ie., when the slowest
horse crosses the finish line). Clearly, each race
is parallel and exhaustive. It requires only a litele
intuition to conclude that the larger the number of
horses, the longer the expected duration berween
the common start and the finishing time by the
slowest horse (i.e., the RT-set size function has
a positve slope). Now, if every horse runs just
as fast and with the same random variation no
matter how many other horses are present, then it
can be shown that the increasing duration for all
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the horses to finish bends over (i.e., increases by
less and less an amount as the number of horses
increases; see Townsend & Ashby 1983, p. 92 for
a proof) rather than being straight. Such a system,
whether run by horses or by parallel perceptual or
cognitive channels, is said to be unlimited capacity
(e.g., Townsend, 1974; Townsend & Ashby 1978).
Sternberg’s (1966} analyses did rule out zhis variery
of parallel processing,

Formal models of memoiry- or perceptual-
scanning have introduced the notion of fmited
capacity in performing the comparison process. In
Townsend’s capacity reallocation model (Townsend,
1969, 1974; Townsend &Ashby, 1983; see also,
Atkinson, Holmgren, & Juola, 1969), a fnite
amount of capacity is redistributed after completing
the comparison of each item, the processing itself is
always a parallel race between the remaining items.
Such limited capacity, patallel exhaustive search
models yield precisely the same predictions as Stern-
berg’s original model (e.g., positive parallel slopes
for target-present and rarget-absent processing,
absence of a serial position effect, and linear growth
of variance with the numbers of items), some of
which are not generally confirmed by experimental
data. Following Townsend’s eatly development
(1969, 1971}, several classes of parallel models
have been shown to predict Sternbergs results
(Corcoran, 1971; Murdock, 1971; Townsend,
1969, 1971a,b, 1972, 1974; Townsend & Ashby,
1983). Moreover, Sternberg’s data can be predicted
by self-terminating rather than exhaustive search
whether in parallel (e.g., Raccliff, 1978) or even
setial (e.g., Theios Smith, Haviland, Traupmann,
& Moy 1973) models. The reader should consult
Section 5 as well as Van Zandt and Townsend
{1993) and Townsend and Colonius (1997) for
more details on the topic of testing self-terminating
versus exhaustive processing in parallel and serial
models.

The interrogation of Sternberg’s results entailed
also (slight) experimental modifications. For exam-
ple, the memory ser can follow rather than precede
the probe stimulus thus initiating what are usually
termed wiswal search {or early target) experiments.
Early examples of these designs are found in the
studies by Estes and Taylor (1969), Atkinson et al.
{1969), and van der Heijden (1975).

A more consequential manipulation entails the
inclusion of more than a single replica of the
target stimulus in the search list. RT is found
to decrease with the number of redundant targets

(e.g, Baddeley & Ecob, 1973; Egeth, 1966; in

bimodal perception, see Bernstein, 1970), a result
inconsistent with the prediction of the standard
serial exhaustive model. Regardless of this particular
result (the violation can be dealt with fairly easily
by slight modification of the perrinent models),
redundant rtarget designs proved a powerful ol in
revealing virtually all aspects of human information
processing.

Sternberg revived Donders’ method of subtrac-
tion in a further profound way. In his method of ad-
ditive factors {Sternberg, 1966, 1969a.b}, one does
not eliminare or bypass a stage (as in the method of
subtraction) bur rather affects it selectively. Think
of the standard memory scan experiment for an
llustration. In the additive factors scheme, the
operation of comparison comprises a single stage
affected by the factor of size of the search set.
Suppose that one adds another stage, stimulus
encoding, affected by degrading the quality of
the visual presentation. The logic of the method
is as follows. Varying the number of stimuli in
the search set affects comparison (and response)
processes, whereas degrading the quality of the
stimuli affects perceptual encoding. Additivity (of
the mean RTs) holds if indeed the manipulations
influence the respective processes selectively. If
one further assumes independence, the incremental
effects of added stages should be additive over
accumulated RTs, too. The expected result in this
two-stage serial model is shown in Figure 4.4. The
influence of set size is revealed by the positive slopes
of the RT curves and that of visual degradarion by
the longer RTs. Critically, the two factors do not
interact as is evident in the parallelism of the slopes.
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Fig. 4.4 Hypothetical results in an addirive factors experiment
in which addicivicy is seen to hold.
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The additive factors method, like the memory
scan cxperiment, has engendered a very large
amount of research, producing a wealth of valuable
theorems (e.g., the independence of additivity and
stochastic independence) and theoretical insights
{e.g, success and failure in mimicty of serial
systems by parallel systems). The last point will
be particulatly appreciated by those expetiencing
the frustration in convincing a graduate student {or
a scasoned researcher!) that a positive slope does
not, ipso facto, imply serial processing {Fearure
Integration 'Theory [Treisman & Gelade, 1980
is a poignant case In point), Criticlsms and
genetalizations of the method uncarthed furcher
important information. For example, addicivity
does generally support separate processing stages;
but interaction docs not necessarily support a single
stage. Statistical properties of analysis of variance
(ANOVA) might compromise, to an exrent, its
value as the (sole) diagnostic tool (cf. Townsend,
1984). A really consequential feature of the method
in virtually all modifications and generalizations
(but see Schweickert, 1982) is that it wells us nothing
about the order of occurrence of the various stages
{or underlying processes). The ensuing problems
were alteady noticed with respect to the original
method by Donders, but they are equally serious
with the method of additive factors.

Sternberg’s landmark studies, along with the
almost concomitant works by Sperling, Estes, Nick-
erson and Egeth and others, inaugurated the human
information-processing apptoach in earnest. Where
Donders, in his subtraction method, changed the
nature of the tasks as well as the number of stimuli,
Sternberg, in his memory experiment, did not
change the task, only added items. Tt is easier
to subtract numerical values of RT than entire
psychological processes (ct. Marx & Cronan-Hillix,
1987). In his additive factors method, Sternberg
showed that it was not cven necessary to subtract
processes, only to affecc them experimentally in
a selective way. Within a decade of Sternbergs
seminal contribution, virtually all students of RT
and roughly half the community of cognitive
psychologists (Lacmann, Lachmann, & Burtterfield
1979) were conducting research employing or
testing some aspect of Sternbergs theory and
methodology.

Basic Issues Expressed Quantitatively
In the previous sections we surveyed some of the
history of mental chronometry. Several key issues
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were highlighted from historical and philosophical
perspectives, all related to the notion of time and
the role it plays in mental processes. First, mental
events—our feelings, thoughts, and decisions—take
time, and this time can be measured. Second, inter-
nal subprocesses can take place one at a time (and
are hence called serial processes), or at the same time
(parallel processes). Third, when several subprocesses
take place, the system must await the completion
of each and every one of these subprocesses before
moving on to respond (exhaustive processing), or
conversely, it can finish before that, say, upon
the termination of any one of the subprocesses
(min;imumrtime).l Fourth, subprocesses may be
independent from one another (or not), and so
do the time durations taken to complete each
subprocess. And finally, we introduced the idea
that people may have a limited capacity—limited
amount of resources (attention}—and hence can
deal effectively with a limited amount of processing
at any given time. In what follows we provide a
formal treatment of each of these basic issues, along
with illustrative examples.

The first issue, regarding the temporal mod-
eling of information processing, is ubiquitous in
theotetical approaches to human cognition. We
see this affirmed in several chapters of chis book,
such as Chapter 3 (Modeling Simple Decisions
and Using a Diffusion Model) and Chapter 6
(A Past, Present, and Future Look at Simple
Perceptual Judgment). Many models of perception
and decision making are based on the premise
that informartion, or evidence toward some rarget
behavior is accumulated over time. Thus, to answer
Titchener’s (1905) question, we have both the right
and the obligation to speak about duration of mental
processes.

The remaining basic issues are discussed next in
greater detail; the reader may find the following ex-
ample helpful throughour this discussion. Suppose
that you are a driver approaching an intersection.
The sight of a red light or the sound of a policemans
whistle signals you to stop and give way. One can
chink of the visual signal and the auditory signal
as being processed in separate subsystems, which
we call channels. We denote the time to process
and detect a signal in each of the channels by 24
(for the visual channel) and 73 {for the audirory
channel). We Further make the assumption that
both signals are presented at exactly the same time
{we can relax this assumption subsequently). What
can we learn abour the time course of informa-
tion processing? What can we learn about the
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relationship berween the information-processing
channels?

The critical properties of architecture, stopping
rule, and independence will now be introduced
with only little mathemarics. A rigorous mathemat-
ical statement regarding architecture (i.e., parallel
and serial processes) appears in Section 4 of this
Chapter. For more quantitative detail on these
features, the reader should consult Townsend and
Ashby (1983) or Townsend and Wenger (2004b, for

a more recent statement).

Architecture: Parallel Versus Serial
DProcessing

As mentioned, two or more subprocesses can
take place one at a rime (serizf), or at the same
time (parallel). Figure 4.5 illustrates these modes
of processing, where each arrow corresponds to a
particular channel. It is convenient to consider the
way the system operates—its architecture—through
the prism of the time it takes to complete the
processing of both signals. Suppose that the driver
is unwilling to hit the brakes unless both signals
are spotted, that is, she processes the two signals
exhaustively. In the serial case (Panel a), the time
to process both signals is the sum of the durations
needed to process each channel, such that total £,/
= #4 + £5. In the parallel case, this time equals that
needed to process the slower of the two processcs,
oarallel = max{z4, tg). It is tempting to think
that parallel processing will yield a faster braking
response compared with serial processing (and more
generally that parallel processing is more efficient
than serial processing), given that max(z4, £8) < t4

4+ g, for any #4, £z > 0. This intuitive notion is
true only as long as we assume that £4 (and similarly
tg) is the same in the serial and the parallel cases.?

Is it realistic to expect our driver to bring her
car to a stop only after she detects both sources
of information? On intuitive grounds, one would
prefer to act quickly on the basis of only one signal,
whichever signal is detected first as a sign of danger.
This issue is considered next.

Exhaustive versus Minimum-Time
Stopping Rule

Awaiting the completion of twa subprocesses is
referred to as exhaustive processing. The processing
durations, #isr and #pgmi for that strategy were
given earlier. It is also possible to stop as soon as
the Arst process is completed; in our example, as
soon as the driver detects the red light or hears
the policeman’s whistle. This scrategy is referred
to as minimum-time processing. The overall time it
takes for a parallel system with a minimum-time
rule is given by #pme = min(zg, #g). For a serial
systern, the total duration depends on the order of
PrOCESSING, fgrigt = 24 If A is first, and ty,y = 5 If B
is processed first. Needless to add., in a serial system
that stops as soon as the first channel completes
{as soon as the first signal is detected), the second
channel will not have a chance to operate at all.
Although other stopping rules are also possible, the
exhaustive and minimum-time stopping rules are
of particular interest. They are illustrated in Figure
4.5 (Panels a—d). Processing times for the different
systems are summarized in Table 4.1.

@ ® Process A
Process A~ Process B .. | Response . . |Response
Decision | ——» Decisian | ——»
Process B
iG] (d Process A
_—
Process A _E_r_(_)g_a_s_e_:_]%____’ Decision |Response Decisian |Response
{e) Process A

Process B

Decision | Responsg

Fig. 4.5 Ilustrations of serial (Panels a, <), parallel (b, d), and coactive (e) systems. Panels 4 and b demonstrace exhaustive processing,

where both processes A and B must finish before a decision and response can be made. Panels ¢ and d show minimum-time processing,
where PpIocessing ceases once process Als c,ornplered {but B had not finished, as indicated by the broken line). Panel e illustraces a

ceactive mode of processing, where activation from two channels is summed before the decision stage.
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Table 4.1. Summary of overall completion times for
the varions models. t4 and tp denote the time to
process signals in channels A and B, respectively.

Model and stopping Overall completion
rule time
Parallel exhaustive max(z4, £3)
Serial exhaustive t4+1p
Paralle! minimum time min(zg, £5)
Serial minimum time
if channel A is processed first
and B second 2
if B is processed first and
A second g
Stochastic Independence

Two cvents are said to be statistically inde-
pendent if the occurrence of one does not affect
the probability of the other. For example, height
and SAT score (standardized test score for college
admissions in the United States) are independent if
knowing the height of a person tells nothing about
his SAT score. In the context of processing models,
total completion-times of channels A and B are
independent if knowing one does not tell us a thing
about the value of the other.

Our discussion of the architecture and stopping
rule was simplified by the fact we assumed that
processing is deterministic, rather than stochastic
(probabilistic). A deterministic process atways yields
a fixed result, such that the effect or phenomenon
we observe has no variability. For example, a
dererministic process predicts that the time taken
to drive from Sydney to Newecastle is always fixed,
or that the time fo choose between chocolate and
vanilla flavors is the same every time we stop at the
ice-cream parlor. Under this assumption, we were
able to represent the time for processing in channels
A and B by the fised values, 24 and 5.

However, observations of human petformance
(and Sydney’s traffic) lead to the conclusion that
behavior is quite variable and that it can probably
be better described as a stochastic process. 1f
so, processing time in any parcicular channel can
no longer be characterized by a fixed value, but
is represented by a random variable. A random
variable does not have a single, fixed value but can
rather take a set of possible values. These values can
be characterized by probabilicy distributions. The
probability density function (pdf) is defined by f{z)
= p(T = t), and gives the likelihood that some

process, which takes random tme T to complere,
will acenally be finished ar time #.

We can use f{#) to define stochastic indepen-
dence. In probability theory, two random variables
are independent if knowing the value of one tells
nothing whatsoever about the values of the other
(e.g., Luce, 1986, chaprer 1). In processing models,
toial completion times of channels A and B are
independent if knowing one, say £4, tells us nothing
about the likelihood of various values of g, Thus,
we can express independence in terms of the joint
pdfs, fag(ta. 1) = fa(ta) - f3(ta), which means that
the joint density of processes A and B both finishing
at time ¢ is equal to the produce of the probability
of A finishing at time #4 and the probability of B
finishing at time #5.

Workload Capacity and the Capacity
Coefficient

We recounted earlier that the time to process
multiple signals depends on the stopping rule
and mode of processing (serial, parallel). Notably,
processing also depends on the amount of resources
available for processing, a notion that we call
capacity. One may think of the cognitive system as
petforming some work, and the more subprocesses
(channels) are engaged the greater the amount of
work there is to perform. We define workload ca-
pacizy as the fundamental abiliry of a system to deal
with ever heavier task dudes (Townsend & Eidels,
2011; see also Townsend & Ashby, 1978, 1983). A
ready example is the increase in load from process-
ing one signal to processing two or more signals.

One may find it useful to think aboutr work
and capacity in terms of metaphots such as water
pipes filling a pool, or tradesmen building a house.
Suppose that the tradesmen operate in parallel
(and, for illustration, deterministically) and that
there is an infinite amount of resources (tools,
building marerials)—unlimited capacity. In that
casc, a twofold increase in the number of workers
will cut to half the amount of time needed to build
the house (assuming all tradesmen have the same
workrate). Critically, adding more workers does not
affect che labor rate of each individual worker. In 2
sirnilar vein, increasing load on the cognitive system
by increasing the number of to-be-processed items
does not have an effect on the efficiency and time
of processing each item alone. The time to process
the visual signal (red light) when it is presented
alone should be the same as the time to process
the same signal when it is presented in tandem
with the auditory signal (whistle by the policeman),
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taa = tajag. To clarify the notadon, the subscript
| AlA indicates processing of signal A given that
\ only signal A is present, whereas A|AB indicates
processing of signal A when A and B are both
present. If several channels are working toward the
same goal and capacity is unlimited, then adding
more channels should facilitate processing.

It is possible however, that capacity is limired. In
one special case, the overall amount of processing
resources, X, can be a fixed value. With more and
more channels coming into play, fewer resources can
be allocated to each channel, and, consequently, the
time to complete processing within each channel
increases. So, for example, the time to process the
visual signal is longer when the auditory signal is
also present. Using the same notation as before,
we can express this as 244 < fq48 and g5 <
tg14p. Under limited capacity, performance with a
given targer is impaired as more targets are added
to the task. Meraphorically, this is tantamount to
tradesmen who are trying to work in parallel buc
share one set of tools. Worker A cannot work at
the same rate that she did alone if she needs to
. await her partner handing over the hammer. Given
I that multiple workers or channels operate toward
i the same goal, a limited-capacity system can still
| complete processing faster than (or at least as fast as)
| any single channel alone (depending on the severity
j of the capacity limitation). However, a limited-
capacity system cannot be faster than an otherwise
identical unlimited-capacity system.

A third and at first curious case is that of super
capacity. It is possible in principle that as more
and more channels are called for action, the system
recruits more resources (Ala Kahneman, 1973) and
is able to allocate to each of the channels more
resources than what each channel originally had
when it was working alone. In this case, £44>
t445 and 5> tp4s. and moreover, the more
signals (and channels) there are, the faster the
system compleres processing. Under supercapacity,
performance with a given target is improved as more
targers are added to the task.

We can model super capacity by way of a system
in which channels A and B pool their activation
into a single buffer, in which evidence is then
compared against a single criterion. In that sense,
processing channels can also join efforts to satisfy a
common goal as could be the case in the tradesmen
example. This mode of processing is often referred
1o as coactivation {e.g., Colonius 8 Townsend,
1997 Diederich & Colonius, 1991; Miller, 1978,
1982; Schwarz, 1994; Townsend & Nozawa, 1995;

Townsend & FEidels, 2011) and is illustrated in
Figure 4.5e. Clearly, this type of model benefits
from an increase in the number of relevane signals.
Wich auditory and visual signals contributing to
a single pool, evidence accumulates more quickly,
and will surpass threshold faster. Thus, a coactive
medel is a nawural candidace for supercapacicy.
However, it is not the only way supercapacity can be
achieved in parallel systems as we shall see (Eidels,
Houpt, Alderi, Pel, & Townsend 2011; Townsend
& Wenger, 2004a).

Townsend and Nozawa (1995) offered a mea-
sure of workload capacity known as the capacity
coefficient:

log ($45(#)]
log [Sa(t) - Sa(5)]”

S4(t) and Sp(#) are the survivor functions for
completion times of processes A and B, and tell us
the probability that channels A and B, respectively,
did not finished processing by time z Sqzfe
is the survivor function for completion times of
the system when channels A and B are both at
work (e.g., when two targets are being processed
simultaneously). We have already defined the pdf,
fit)=p(T'=1), as the likelihaod that a process that
tzkes random time T to complete will actually be
finished at time #. We can also define the probability
that the process of interest is finished before or at
time £, known as the cumulative distribution function
(cdf), F(t) = p(T < t). The survivor finction is the
complement of the cdf, S(t) = I — F(t) = p(T> 1),
and tells us the probability that this process had not
yet finished by time

The capacity coefficient, Cop(e), allows to assess
petformance in a system that processes multiple

Cor(t) = (1

signals by comparing the amount of work done by
the system when it processes two signals with the
amount of work it does when each of the signals is
presented alone. The subscript OR indicates that
processing terminates as scon as subprocess A or
subprocess B finishes (i.e., minimum-time termi-
nation). Townsend and Wenger (2004a) developed
a complimentary capacicy coefhicient for the AND
design, where the system can stop only after the two
processes, A and B, ate both finished:

log [Falr} -Fp(s)]
log [Fap(#)]

Equations 1 and 2 both apply to two channels,
but the C(#} index can be easily generalized to
account for more than wwo processes (Blaha &
‘Townsend, 2006). The interpretation of Cprft)

Canp () = 2
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and Cunp(t) is the same, so that C(z) refers
to both indices. Parallel-independent models are
characterized by unlimited capacity, cir) = 1.
Capacity is C(2) < 1 in a limited capacity model,
and it is C(#) > 1 with super capacity in force.
Architecture (serial, parallel), stopping rule, and
potential dependencies can also affecc the capacity
coefficient. For the effect of architecture, consider
a serial model, which processes channel A first and
then processes channel B. This model will rake more
time to complete, on average, than an otherwise
identical parallel model in which processes A and
B occur simultancously, The former also results
in Cft)<1 — limired capacity. Breakdown of
independence across channels also affects C() in 2
predictable manner. Townsend and Wenger (2004a)
and Eidels et al. (2011) have shown that positive
dependency (one channel “helps” the other) can
lead to supercapacity, C()>1, whereas negative
dependency {one channel inhibits the other) can
lead to limited capacity, C(#)<1. The capacity
coefficient is discussed further in the later section,
Theoretical Distinctions, along with an illustrative
example from the Stroop milieu. The interpretation
of C(z} is particularly revealing when discussed
with respect to the benchmark model that we
describe next.

The Benchmark Model: Parallel,
Independent, Unlimited Capacity

The scandard parallel model can be considered
as the “industry’s standard” in response-time mod-
eling. This model is characterized by unlimited
capacity and independent, parallel processing chan-
nels (attributes that yield the acronym UCIL e.g.,
Townsend & Honey, 2007). If we further assume
that the model can stop as soon as cither one
of the channels completes processing, we end up
wich an independent race model, illustrated earlier
in Figure 4.5(d). Formally, the stochastic version of
this model can be written as

Sap(2) = Sa(2) - Sple). 3)

Sa(t) and Sp() are again the survivor functions
for completion times of processes A and B and
tell us the probabilicy that channels A and B,
respectively, did not finish by time # Consider
a model that stops processing as soon as either
channel finishes (mintmum-time processing), buc will
otherwise not stop as long as process A is still going
on and process B is still going on (ie., as long as
both processes “survive,” hence the term survivor
function). Because processing-channels A and B are

——_

independent, we can multiply the probabilities so
that the probability that the entire system does not
stop by time # Sap(), is given by the product
of the probabilities of A and B not fnishing
(see Eq. 3 again).® We note that this equation
describes 2 mode!l with only two channels, but it
can be generalized to any number of channels. The
probability that an independent race model with
n parallel channels does not complete by time # is
given by the produc of the probabilities of neither
channel fnishing,

Smimz'mum—nme (t)

=810)- 52 - S =[] S0 (@

=1

Given a parallel model, it is possible that the
system stops only when ail of its channels had
completed processing (exhanstive processing). In the
example, the system will stop only when both
channel A and channel B stop. Assuming again that
the channels are independent, the probability that
the model completes processing by (at or before)
time £ is equal to the product of the probabilities
of channels A and B finishing,

Fup(t) = Falz) - Fp(2) 5

and in the more general form, with n channels,
Fpioe = F1(0)-Fol)-. T = | [ F:0) (©)
=1

Two well-known RT’ inequalities also define the
benchmark model. Miller (1978, 1982) proposed
an upper bound for performance in the OR design
(“respond as soon as you detect A or detect B”), the
race model inequality: '

Fup(s) < Fa(e)+ Fp(z). (7

The inequality states that the cumulative distribu-
tion function for double-target displays, F ap(0),
cannot exceed the sum of the single-target cu-
mulative distribution functions if processing is
an ordinary race between parallel and inde-
pendent channels. Violations of the inequality
imply supercapacity of a racher strong degree
{Townsend and Eidels 2011; Townsend and
Wenger 2004a).

Grice, Canham, & Gwynee (1984) introduced a
bound on limited capacity, often referred to as the
Girice inequality:

Fyplt) = MAX[Fa(z), Fa(2)]. {8)
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This inequality states that performance on double-
targer trials, Fqp(z), should be fasier than {or at
least as fast as) thar in the faster of the single-
target channels. IF this inequality is violated, the
simultaneous processing of two targer signals is
highly inefficient and the system is very limited
capacity. An implication is that there is “no savings”
or gains in moving from a single target to multiple
targets (in OR designs). In Section 5 we shall
demonstrate the use of the three assays of capacity
in an OR design — C(#) and inequalities (7)
and (8). Colonius and Vorberg (1994) proposed
upper and lower bounds appropriate for AND
tasles (“respond if you detect target A and target
B”), which are analogous to OR rasks in the
sense that their violations indicate supercapacity
and limited capacity. Our benchmark model is,
therefore, useful in serving as a gold standard
against which performance can be compared and
interpreted.

Conclusion

Information-processing models can be character-
ized by the following four features referring to the
relations among processing channels: architecture
(serial, parallel), stopping rule (minimum-time, ex-
haustive), capacity (limited, unlimited, super), and
stochastic (in)dependence. Most of these properties
are latent and cannot be observed directly. Response
times are useful tools in uncovering these properties,
but in some cases the result is not unique.
Model mimicry is thus the focus of the upcoming
section. The caveats granted, recent advances
in response-time modelling of cognitive processes
proved useful in addressing some of the mimicking
challenges (allowing researchers to identify critical
features of human information-processing). The
later section on Theoretical Distinctions outlines
some of the advances, followed by applications
of novel techniques from empirical literature. The
reader might have noticed that some interesting
topics such as the stochastic form of serial models
were excluded from our discussion due t lack
of SpaCC.4 However, the topics included in this
chapter should give the reader a good understanding
of elementary information-processing theory and a
solid preparation for more specialized reading. Box

1 gives a practical illustration of the outstanding
Issues,

Model Mimicry
Possessing the building blocks (architecture,
Stopping rule, capacity, and independence), we

Box 1 Is human capacity limited?
We noted in this section that workload
i capacity—as measured by the capacity
coefficient—could theoretically be limited,
unlimited, or super, depending on whether
the efficiency of processing decreases, is left
unchanged, or increases with additonal load
(e.g., more signals to process). Cumulative
evidence sugpests that human capacity is
limited (Kahneman, 1973), yet important and
frequent situadons of modern life, such as
driving a car, require simultaneous processing
of multiple signals. Therefore, a key question
is whether human capacity is, in fact, limited,
and what might be the consequences of such
limitations in our everyday life. o
Strayer and Johnston (2001) studied the
effects of mobile-phone conversations on per-
formance in a concurrent {simulated) driving
task. They found that conversations with either
a hand-held or 2 hand-free mobile phone while
driving resulted in a failure to detect traffic
signals and in slower reactions to these signals
when they were detected. The findings clearly
suggest that human capacity is fimited. How-
ever, in 2 more recent driving-simularor study
Warson and Strayer (2010) have been able
identify a group of individuals—referred to as
“supertaskers” who can perform multiple tasks
without observed detriments. Although' the
majority of the participants showed significant
performance decrements in the dual-task condi-
tions (compared with a single-task condition of
driving without distraction), a small minority
of 2.5% showed no performance decrements, |
These supertaskers can be best characterized as
having unlimired capacity (and possibly even
supercapacity). - The simulated-driving studies
by Strayer and colleagues highlight some prac-
tical Implications of uncovering latent mental
constructs (capacity, in this example). -

now can expand purview to establishment of classes
of models characterized by those properties. For
example, exhaustive stopping rule in a serial model
with independent identically distribured processing
times, will have 2 mean response time equal to the
sum of the mean response times for each chanwel

E [RT] =L [RTChanml 1] +E [RTCfmnne! 21
+ -+ E[RT hapnel n]l +1E [Zal,
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where T} is the base time to respond. Thus, for each
channel added, we simply add its mean response
time for the total average response time. But, is this
the only model with such a prediction?

In chis section, we provide instances of averlap in
predictions that arise from assuming various mod-
cls. When one model can predict the results of an-
other model, we face an instance of model mimicry.
Though pethaps an obvious platitude, investigators
rarely seem to concern themselves with the specter
of mimicry. Tn this discussion, we emphasize total
mimicry, that is, the existence of mathematical
functions carrying the structure of one model to
another in such a way as to render them completely
equivalent. The upshos is that no data expressed
at the same level as the mimicking equations can
decide between competing models. Mimicry at
other levels will be considered as well as some
remedies to parallel-serial dilemma {in the following
section).

Mean Response Time Predictions

Recall that mean RT has been a useful tool in
helping to determine (or eliminate) models best
suited for data. Sternberg (1966), discussed in
Section 2, supported a positive linear relationship
between mean RT and set size. An eatly extension
of this paradigm to conditions where the items were
on display (instead of being stored in memory)
was carried out by Atkinson et al. (1969) with
largely similar results. The evidence for exhaustive
processing was supported by the lack of an effect
for the serial position of the target in the list.
On the other hand, Nickerson (1966) argued that
these data could be raken to faver self-terminaring
processing., In a seminal research with a different
type of visual paradigm, same-different match-
ing design with multiple rargets, the data were
interpreted as supporting a serial self-terminating
process (Egeth, 1966}. Even within the visual search
paradigm, sometimes a self-terminating stopping
is found and sometimes an exhaustive stopping is
concluded. [See section, Theoretical Distinctions
for further discussion of assessing the decisional
stopping rule],

However, in none of these pioneering studies
was the potential for confounding by other pro-
cessing characteristics, especially capacity, taken
into account. As we recounted, the early standard
model was a serial, exhaustive model with equal mean
processing times for every item. If one additionally
assumes that each item or stage possesses the
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same actual processing distribution (thus produc-
ing the equal mean processing tmes a fortiori}
and that they are also independent, then one
has the completestandard serial model as outlined
earlier.

For simplicity, assume that the mean processing
time for each of the single items are all equal.
Assumne further that the target has equal probability
of appearing in any of the » positions. On
rarget-present trials, participants process %1 items
on average (yielding a positive linear relationship
berween mean RT and set-size). On target-absent
trials, participants have to process the entire list,
so thae the average RT is » times the mean RT
for a single item. Therefore, on both target-present
and target-absent trials, there is a positive linear
relationship between mean RT and set size.

As we alluded in Section 2, it can be shown that
unbimited capacity, independent parallel models do
not generally make this prediction. These models,
when using an exhaustive stopping rule, produce
logarithmic-like functions that increase with set
size, but not in a linear fashion (see Townsend
and Ashby 1983, p.92). In the case of minimum
time (Le., race) stopping, they yield curvilinear
decreasing mean RT functions. Interestingly; single-
target self-terminating processing reveals a flat,
straight-line mean RT' function for these models.
Yet, the linear prediction of the standard Sternberg
model is not unique to the serial class of madels.
Next, we introduce a particular parallel model,
where the rate of processing depends on the number
of items to be processed, that does vield the linear
increase prediction. This model is just one of a
multitude of models that can predict the linear
relationship found in the data.

Mean response times are a COMMON Measure
used in determining the processing mechanisms
in a task. Although illuminating with respect to
the manipulated variables, the model conclusions
made from such observations must consider the
possibility of mimicry.

Supporting Mathematics: Serial Model

Recall from the previous section, Basic Issues
Expressed Quantitatively, that, in a serial model,
items are processed one at a time. In minimum-
time processing the target may appear in any of the
available positions and processing stops when the
target is found. As standard practice, E[F] denotes
the mean processing time of the sth item. Themn,
using mathematical induction, for target present
trials, one has
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wheteas on target-absent trials the result is simply

£[h]

E(Response Timefor #items)
=Eh+ -+ Il ==E[f].

There is, thus, a linear relationship between number
of irems and mean response times for positve and
negative responses. Of course, the minimum time
serial prediction is simply Ef11/, a flat straight line.

Supporting Mathematics: Parallel Model
For clarity, a “stage” of processing is the time
from one item finishing processing to the next
item finishing processing. For example, in an
exhaustive model with three items to be processed,
any channel will have three stages: the time from
start until the fArst item is processed, the time
after the first item is processed to the time the
second item is processed, and the tme from
the second item’s completed processing until the
remaining item is finished processing. In a parallel
model, the distribution of stage processing time
takes the form of a difference between item
| processing times usually conditioned on channel
: information. Within-stage independence is defined
as the statistical independence of stage processing
times across two or more channels in the same
stage, 7. Across-stage independence assumes che
independence of these times occurs within the
same channel, but for different stages. Consider
the within-stage independent parallel model with
each item having a processing time following
an exponential distribution with a rate inversely
proportional to the number of items, 7. In other
words, the more items to be processed, the longer
the actual processing time of each item will be.

Thus, let Layj = €Xp (— ) be the processing

4
n—j+1
density for the # item in stage j of processing. For
example, stage-one processing on all items is g1 =

|
|
|
|
| Epl=---=g, 1 =exp (—;“), whereas stage-two

Processing has densicy function
A
£a2=gp1 = =gy =xp | = |

We omit the reasoning due to space limitations,

. . .1
but the average processing time for each stage s I

—_— . contl (1
SD, l'hC mean p[OCCSSlI’lg time FOJ.' # IICIMS 1S 7 (1)

(positive response) and n (%) (negative response).
So, for A = ﬁ this parallel model gives the same
predictions as the aforementioned serial model for
mean response times as functions of the number of
items.

Intercompletion Time Equivalence

We refer to the time required for a stage of
processing as the intercompletion time. So in a
serial model, the intercompletion times are just the
processing times. We now examine the issue of
model mimicry with respect to the distribucion of
the intercompletion times. We will show cases in
which equivalence can occur between two common
models, the across-stage independent serial model
and a large class of parallel models that assume
within-state independence. Across-stage indepen-
dence is defined as the property that the probability
density function of two or more stages of processing
is the product of the component single stage density
functions. Consider the case in which there are two
channels, 4 and &, each dedicared to processing a
particular item.

To make the equivalence easy to follow, we write
the serial model on the left side of the equations and
the parallel model on the right. We use f for the pdf
of the serial model, and g for the parallel model.
2 denotes the probability that & is processed first
in the serial model. f;1(#;1)is the probability that
it takes # the exact time of #,;to Anish in the first
stage of processing. G is the cumulative distribution
function of the respective subscript (for a parallel
model). So Gy (2:1) denotes the probability chat the
first stage of processing for & will fail to finish before
the time z;in a parallel model.

Then, for the independent serial model to mimic
the independent parallel model on all response time
measurements it is necessary thau

Pl ta)fon (a2 lta1)
= g1 (1) Got () g2 (252|201, (9

(1 — ) (Be1 )z (tazl2p1)
=001 (451) Gt (51 g2 Gz i), (10}

For mimicry on the level of intercompletion times,
we need equivalence for each stage of processing.
For example, in the case in which where @ is
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processed first (preceding Eq. (9)) one needs w
define " and p so thar

Pt} =ga (£1)Go1 (Eat)-

The three “equal” signs simply indicate thar this
equation must be true for all values of ;1.

This turns out to be readily done. Thus, there is
a serial model that can completely mimic response
time predictions from any given independent
parallel model. This shows us that response time
measutements are not encugh to prove that there is
a unique model for the processes involved in a task.
Fortunately, there are distributions for the serial
model that make parallel mimicry impossible. The
upshot here is that chis serial class of models is more
general than that of the parallel models—the paral-
lel class is mathematically contained within the serial
class. 'This result provides one potential avenue
for assessing architecture: Try to determine from
the experimental data and appropriate statistics if
processing satisfies serial but not parallel processing,
If parallel models pass the tests, then these particular
tests cannot discriminate (for that task) serial versus
parallel architectures.

The Math Beneath the Mimicry
Note that by integrating with respect to #52, (Eq.
9) reduces o
2 (tat) = gat (1) G (ta)

[FirstStageProcessing]

fir (a2 1 ta) =goa (i | 81) -
[SecondStageProcessing]

The same conclusions hold for Eq. (10) by
integrating with respect to 5. This means that
if there is intercompletion time equivalence, then
there is toral model equivalence.

Proposition 1. Givern any within-stage independent
parallel model there is always a serial model that is
completely equivalent to it.

Proof This proof generalizes to cases where there
are more than two processing positions (Townsend
1976a). Consider the following within-stage inde-
pendent parallel model:

2l 52 (tals tas <ia >)

= (ral )Z;E(tal )gEaZ (tbl | ta]‘)
and

FAWAIN T <ba>)

= g51 (t91) Ga1 (81 g2 (22 201)

where <a, b> denotes thar « finishes before &. To
show equivalence one needs to define Faioforsfazo ez
and p for a serial model so that each stage of
processing gives equivalent intercompletion time
predictions.

As above, for a second stage processing, simply
set

Finltaltar) = graltoz |t

and
F2(aalten) = gaa (22l tn)-

Now we focus on £ and p. For equivalence, it is
sufficient that

i) = ga (B Gp (1) (x1)

Integrating with respect to £,

m ———
= / 2a{nGp (1t
0
By dividing by p in the equation *1,

_&a (r)-(TH(r) _ £al (I)G—g](t)
Ja®) P I g () Gp ()t

The remaining density, f31(£), can be solved in the

same way as above, using the equation

(1 = p)fir () = g1 () G (o) (2}

and the face that

o0 [o: ] -
t-p=1- [ G = fﬂ 031 (TG (.

Thus, the serial model that mimics the parallel is
given by:

"

p= fo g1 (D Gy (B)edt

. &a ('f)G—bl(t)
Jur®) = Iy ga (G ()t

_ gGal)
Fn) = 15 G s

For(talta1) = g2 (E52]21)
and

Foz (o lta) = g (tp2|221)-

A Simple but Convincing Example

Assume the exponential distribution for each
position and channel in both a serial and a paralle]
model. Assume across-stage independence, too. We
follow Townsend and Ashby’s (1983) convention
and use different parameter notations for serial (#)
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and parallel () models. We will derive parameter

mappings [p = (v, 22,051, v52)] that leave the
serial and parallel equations equivalent.
Then the density function for the serial model is

i (s tpps <a b>)
= pttg1exp( — w1t ) tgexp(— wpt3))

and the distribution for the parallel model is

gag (T, gy <2, 6>)
= varexp [ (va1 + 251) 21 ] vazexp (—vpatin) -
Step 1: Set w7 = vg and uyy = vpp. Second stage

equivalence achieved.

Step 2: Suppose the order is < a,&> for serial
processing. Then computing conditional means for
the first stage processing,

1
BT |<ab>)=—,
gl
whereas for < b,a >,
1
(T <ba>)=—.
. up1

Bu, for the parallel process the mean for the first
stage of processing is

BTyl <ab>)= =FF(Ty| < bya> ).

vt g
So, for equivalence
gl = Hp1.
Step 3: Now turn to
2 = |Probability that « is first in a serial mocle[]
=P(<ab>).
Recall that

PPl<ab>)= /mgal(r)ﬁbl(t)dt
0

[o. 0]
= f varexpl — (vg + s elde
]

Vgl
va1+val

So, set

= Val
Va1 T U
In sum, we have guided ourselves to the following
Propositions.

Proposition 2. Given an across-stage independent
and  exponential serial model such that wuy; #
Uy, there is no exponential, within-stage independent,

and across-stage independent parailel model thar is
equivalent to it.

Although a logically sound statement, it may
carry oo many assumptions on the processing
densities to serve for practical application. Below is
a more peneral theorem.

Proposition 3. Given a serial model, then if there
exists @ within-stage independent parallel model that
is equivalent to it, it can be found by setting

Pﬁll (rf) A
PEa ()4 (1=p) Fp (+)

B F - pfal) }
G = €X] - 57 r d
o) =exp { /0 P+ (1—pFa)”

22(tar|ta1) = fro (g2 |8t)

Ga (0= exp

~f
0

and

ga (tazltp)) = fao (a2t} -

Conclusions

In the listed two examples, one can see
how making assumptions about the medel can
yield overlapping predictions in response times
and the relationship with number of channels
{or items). These conclusions obvicusly sound
a warning siren with regard to drawing hasty
inferences from the traditional logic concern-
ing behavior of architectures. It would appear
that the best that one could achieve would be
to posit several classes of models, for exam-
ple both parallcl and serial architectures, which
may explain the data rtogether. However, sub-
sequent sections will reveal how our metathe-
oretical approach can lead to experimental de-
signs that assay such characteristics at a more
fundamental level. For even more generality in
model mimicry, see Townsend and Ashby (1983,
Chaprer 14).

Theoretical Distinctions

We now turn our attention toward theoretical
conditions and measures under which models are
not equivalent. Careful probing of these conditions
will guide us to experimental designs that can
overcome the parallel-serial dilemma and reliably
distinguish between informaton-processing sys-
tems in a broad range of empirical settings. Because
questions of processing characteristics have been
motivated largely by the domain of visual and
memory search, they provide the most natural
examples. However, the field has recently moved
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toward more general applicability, and chis section
appropriately culminates in a discussion of the
Double Factorial Paradigm, which allows the ex-
perimenter to evaluate architecture, stopping rule,
capacity, and stochastic independence in a single
biock of trials and which can be applied in a

multitude of perceprual and cognitive tasks.

Architecture Distinctions based on
Generality

SERIAL SYSTEMS GENERALITY BASED ON
DEGENERATE MIMICKING

First, we will tic up some loose ends from the
previous section by using the results of Proposition
3 to point out an example of a serial model that is
unable to be mimicked by a parallel model. When
considered alongside the fact that any parallel model
has an equivalent serial model (Proposition 2), we
arrive at our first fundamental distinction, which
we will later refine: serial models can be move general
than parallel models. Later, we will discover ways
in which parallel models can be more general than
serial models.

Suppose we start with a serial model and want
to check whether it can be mimicked by a parallel
model. Recall that the four equations in Proposition
3 determine the form of that parallel model if
it exists. Now, if either G,1(&) or Gyi(r) fails
to be a wue survivor function (for example, if
lim;— o G(#) > 0), then the corresponding parallel
mode! is deficient, and the serial model cannot be
mimicked. A serial exponential model in which
the first-stage rates are not equal (i, # #p1) is
perhaps the simplest case in which the impossibilicy
of mimicry can occur {Townsend, 1972). Following
this line of reasoning, Townsend (1976a) derived
a set of necessary and sufficient conditions for the
existence of well-defined survivor functions.

Given that every quanticy in these conditions
is in principle derivable from reaction time data,
a testable mechanism is provided for rejecting the
possibility of parallel mimicry and confirming a
true serial architecture. Ross and Anderson (1981)
were among the first to apply these conditions to
empirical data, testing an assumption of Anderson’s
Adaptive Character of Thought® (ACT} model
that the spread of activation in memory search
is parallel and independent. In the process of
applying Townsend’s conditions, they encountered
and addressed several obstacles. The authors had to
consider extending the cheoretical results to account
for the possibility of having 2 mixture of convo-
lution of different reaction time densities (e.g., in

Fi-

hybrid models) and also find techniques to analyze
the tail behavior of empirical distributions. They
overcame these obstacles and their data indicated
that it could have been produced by a parallel
system of the type envisioned by the ACT model.
As we have noted, however, the data could not rule
out serial processing, it just failed to reject parallel
processing.

PARALLEL SYSTEMS GENERALITY BASED ON
PARTIAL PROCESSING

So far, we have considered processing models,
even dynamic models, as functions of mapping
stimuli onto RT and response probabilities. At
this point in our development, we must enrich
these models with che concept of a state space.
Simply put, the state space of a dynamic system
is the set of values that the system may obtain. A
variety of models, including sequential sampling
and random-walk models, traditional counting
models, and multi-stage activation models (Rawcliff
and Smith 2004), suppose that as some cognitive
process unfolds dynamically in time, evidence is
gathered from each element #; in the stimulus
space, and a threshold ¢; must be reached before
the element #; has been completely processed. The
state space, therefore, constrains the possible values
that the amount of evidence can take at any given
time. It turns out that probing the continuum of
accumulated evidence reflected in the state space
can be very informative in distinguishing between
archirectures. In fact, it reverses the mimicry-based
serial systems generality proven eatlier, such that we
can use it to reject serial systems and legitimately
confirm parallelism.

To formalize this reasoning, we denote the
amount of information that has been sampled
from the element #; at some point in time by
y;(r). This function can be either discrete or
continuous, as required by the phenomena being
modeled. In a traditional discrete-stage model, y;(2)
could represent, say, the number of “features”
from the feature set that have been sampled from
an alphanumeric character (see Figure 4.6 for an
example from visual search). Here, the state space
is finite, since each character has a finite number of
features that can be processed. A Poisson process,
on the other hand, operates over a countably
infinite state space, such that the possible amount
of evidence gachered from each item can be pur
in correspondence with the integers. Finally, 2
continuous {uncountably infinite) scale for y;{#) is
familiar from connectionist models of cognitiomn,
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Serial Parallel

Fig. 4.6 Ilustration of the underying scate space in visual
search. The two panels represent stimulus displays for which
a participant is instructed to “find the 5.7 Individual fearures
of each letrer are grey and doreed if they have not yer been
processed, If processing is cuc off ar some poini—for instance,
if the display terminares—the participant may be left with some
letrers in a par(ial srare Dfproccssing. In the left pa_nt:], the letter
“E” is in a partial state. Notice that the serfal processor must
treat che letters one at a time, so there is at most one stimulus in
a pa[[iﬂl state. In the [ight panﬁl, on the other hand, all four of
the letters are in partial states of processing because the parallel
processor has no such restriction.

such as McClelland and Rumelhart’s {(1981; sce
also McClelland, Ramelhart, 8 the PDP Research
Group, 1986) interactive activation model, where
it is commonly referred to as the activation value of
a node. This is also generally the case in diffusion
processes.

If the state space contains more than one
value, then we can, in principle, consider partial
processing of clements {in the discrete, feature-
based case, this corresponds to some but not all of
the features in an object been processed at the end
of the trial; see Figure 4.6}. This helps us distinguish
between architeceures in the following way. A serial
system can only sample features from a single
element #; at once, and only moves on o begin
sampling from another element after completing
the first. Thus, there can be at most one element in
a partial state of completion (t.e., 0 < y;(2) < )
in a serial system, whereas a parallel system can
have arbitrarily many elements in such a state. One
way to distinguish a parallel processor from a serial
processor in an empirical setting, therefore, is to
observe the underlying state space while more cthan
one item could be in a partial state of completion.

Townsend and Evans (1983) developed a full-
Ieport experiment based on this premise. They
collected second guesses from participants and
examined che pattern of accuracy. Fach underlying
state {e.¢., “item 1 totally processed; item 2 partially
Processed”) maps onto some accuracy pattern (e.g.,
“item 1 correct and itemn 2 incorrect on first EUess;
item 2 correct on second guess’). However, serial
models cannot produce underlying staces with more

than one item partially processed, so the rwo
meodels predict observably different distributions of
accuractes. The authors tested the hypothesis that
processing was parallel against a null hypothesis
where it was serfal. In the statistical analysis, the
predictions were passed through two progressively
stricter “sieves’ and the serial null hypothesis
was unable t be rejected. This work was later
expanded by Van Zandt (1988} to demonstrate
patterns of individual differences in parallel and
serial processing. One individual may perform a
task in a serial mode, whereas a different individual
experiencing identical experimental conditions may
perform in a parallel mode.

SERIAL SYSTHMS GENERALITY BASED ON ORDER

The next fundamental distinction is the way in
which order of completion is selected {Townsend and
Ashby 1983, Chapters 3 and 153). As a concrete
context for discussion, consider a typical visual
search task in which a participant is instructed to
decide whether a particular target is present in a
display with distractors (e.g., the letter H in an
array of other letters). Suppose that this search were
cartied out serially. It is plausible, then, that the
participants could causally direct their attention,
choosing at each stage which item will be examined
next. They could even decide on some search
strategy a priori: “Start with the lefr-hand stimufus
on the top of the display and scan from left to right,
top to bortom.” In any case, it is apparent that the
order of processing is not affected at all by the rates
of completion of the various items.

If this rask were carried out in parallel, on
the other hand, order of completion is entrely
determined by the relative rates of different items.
If ttem # can be processed faster than item &, then
the two items will be completed in the order <a, &>
more frequently than in the order <&, 2> simply by
the stochastic nature of processing, and no a priori
decision is able to affect this ordering.

PARALLEL SYSTEMS GENERALITY BASED ON THE
IDENTITY OF ITEMS OR CHANNELS

To summarize our conclusions thus far, we have
scen that the rate of processing at each stage in
both serial and parallel models can depend upon
the identity and order of previously processed items,
but only in serial models can the rates potentally
depend upon a predetermined order of future items.
Parallel models are capable of a different kind of
Hexibility, however—dependency on the identity
of items that have started, but not vet finished
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completion (Townsend 1976b). Consider a visual
scarch with three items, @ & and c All items
are being processed simultaneously, so if item ¢
is particularly inscrutable and takes more effort to
process, iis presence in the display might slow down
the completion time of items 2 and &, even if 4
or b end up finishing first. This is behavior that
cannot be mimicked by a serial model. Note also
that not all paralle] models necessarily have this
property; it is an additional degree of freedom we can
draw upon when constructing a parallel model to fit
observed data. If « is the target in a self-terminating
UCIP model, for example, processing times would
be independent of the identity of ¢ by definition.
However, a limited capacity parallel model predicts
the desired behavior.

PARALLEL-SERIAL TESTING PARADIGM

These simple observations about generality based
on order and identity are the foundation of the eatly
Parallel-Serial Tester (PST) paradigm (Snodgrass
and Townsend 1980; Townsend 1976b; Townsend
and Ashby 1983, chapter 13; Townsend and
Snodgrass 1974). The PST paradigm is built on
three separate conditions of a simple matching
experiment, in which a participant must search
through a list of two items for targets. In Condition
1, the participant gives Responsc 1 (R1} if the rarget
item appears on the left of the list and Response
2 (R2) if the target item appears on the right.
Condition 2 is a simple AND task, where the target
must appear in both positions for response R1, and
Condition 3 is a simple OR task, where the target
may appear in either position for response R1.

Condition 1 is used to get a baseline measure
of order effects, which is compared with the cases
of Conditions 2 and 3. The processing time of an
item under serial processing cannot depend upon
the identity of other uncompleted items, so each
intercompletion time that we measure empirically
must be the processing time of a single item.
Intercompletion times under parallel processing
face no such constraint. Although the mathematical
details and precise predictions for both models are
fleshed out in Townsend and Ashby (1983, Chaprer
13; see also Townsend 1976b), the basic result for
serial systems forces the sum of mean reaction tmes
in the two possible orders of Condition 1 to equal
the sum of mean reaction times in the redundant
conditions. If the two sums violate this equality, we
have empirical evidence for patallel processing.

This paradigm was used successfully by Neufeld
and McCarty (1994) to investigate the effect of

—f

stress (e.g., periodic high intensity sound) on
performance in the three conditions described
above, with letters Q, R, T, and Z as stimuli.
Contrary to expectations, they found thar the
presence of a stressor made the system more
likely to operate in parallel. In his dissertation,
Vollick (1994) applied PST to the clinical setting,
It was suggested that the cognitive impairments
found in paranoid schizophrenics do not stem
from architectural issues, as they process stimuli in
parallel the same as healthy individuals, but rather
from inefficient deployment of their processing

capacity.

Stopping Rule Distinctions based on
Set-Size Functions

We take a short break from rhe serial-parallel
dilemma to consider ways to distinguish berween
exhaustive and  self-terminating  stopping rules,
Since Sternbergs classic work (see Section 2),
it has been common to test the stopping rule
by examining slope difference in response times
to different set-sizes. Consider again the class
of standard serial models, where the processing
random vatiable is the same across all experimental
variables such as processing position, location in
a display, identity and so on. As we recounted,
if processing is exhaustive in such models, one
predicts that the slope of the lines would be equal,
regardless of whether the rarget is present, every
item must be checked. In addition, it is predicted
that no display position effects on RT will be found
in the data. If the participant is able to terminate
the process as soon as the target is found, on the
other hand, one predicts the mean RT on positive
trials to be lower on avérage than on negative
trials.

Townsend and Ashby (1983, Chapter 7) pointed
out that if processing times can vary with display
posicion, processing position, or identity (eg-
regardless of whether an item matches the probe),
then exhaustive models could actually violate the
above predictions. However, subsequent theoret-
ical effort discovered that exhaustive systems are
nonctheless extremely limited in how far they
can deviate from those standard serial model
predictions. A series of “impossibility” theorems
{Townsend & Colonius,1997; Townsend & Van
Zandt, 1990) have shown that large classes of
exhaustive models of any architecture are incapable
of producing significant slope differences. Further,
they also showed that the ability of such models

to evince strong display position effects is severely
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delimited. Commensurace with the other results of
this section, these results offer us mechanisms to
reject the possibility of exhaustive processing and
confirm self-termination. Van Zandr and Townsend
(1993) give a broad review of empirical applications
of this test, ultimately concluding that participants
employ a self-terminating stopping rule whenever
they can properly do so in an overwhelming
majority of experimencts.

Distinctions based on Reaction Time
Distributions

The search for an empirically tractable way to
distinguish between underlying cognitive processing
systems reached a milestone with the development
of an experimental protocol called the Double
Factorial Paradigm (DFP; Fidels, Townsend, &
Algom 2010; Townsend, & Nozawa, 1995; Wenger
& Townsend, 2001), which vields a singularly pow-
erful test not only of the serial-paralle]l distinction
bur also of stopping rule and capacity (as well as
stochastic independence, though less directly). This
paradigm rests within the theoretical framework of
system factorial technology, an extensive general-
ization of Sternberg’s additive factors methodology
(Ashby & Townsend, 1980; Townsend, 1984;
Townsend & Ashby, 1983; see also Dzhafarov 2003;
Kujala & Dzhafarov, 2008; Schweickert, 1978;
Schweickert, Fisher, & Sung 2012; Schweickert &
Townsend, 1989).

DOUBLE FACTORIAL PARADIGM

The DFP entails two concurrent manipulations,
each creating a factorial design (hence the donbie
factorial paradigm). The first manipulation varies
the number of presented targets (workload) in
the visual search task posed. This present-absent
manipulation is ideal for probing the capacity of
the system. The second manipulation (note thar
the designation “first” and “second” does not imply
logical or temporal order) perrtains to the salience of
the stimulus features. The salience manipulation is
ideal for probing the serial-parallel distinction along
with further aspects of processing at both the mean
and discribution levels.

Consider a Stroop display in which the words
RED and GREEN are each presented in red or
preen ink, and a uwial consists of a single word
displayed in a single color (Eidels et al., 2010;
Melara & Algom, 2003; Stroop 1935). Suppose
further thar (any kind of) “redness” is defined as
the target, so that RED in red ink comprises a
redundane target display, RED in green ink and

GREEN in red ink comprise one-target displays,
and GREEN in green ink is a no-targer display.
Note that the display can contain two, one,
or zero targets, so that the effect of redundant
targets is tested, too. The presence-absence fac-
torial design thus created (WORD: target-present
[RED], target-absent [GREEN] crossed with ink
color: target-present [red], target-absent [green]),
depicted at the botom of Figure 4.7, enables
the use of the capacity coefficient (Townsend &
Nozawa, 1995) as well as important RT inequalities
{Grice, Canham, & Gwyane, 1984; Miller, 1982;
Colonius 8 Vorberg, 1994; see, Luce, 1986;
Townsend & Eidels, 2011).

To carry our the salience manipulation in our
example, the target word RED can appear in a
highly legible or in a poorly legible font and,
similarly, che rarget red ink color can appear in a
focal or in an off-focal wavelength. The goal is to
selectively speed up or slow down the processing
of the specific feature, that is, to manipulate one
channel without affecting the other. This second
factorial design (word-target salience [high, low]
X color-target salience [high, low]), depicted at
the top of Figure 4.7, turos outr to be highly
diagnostic wich respect to serial-parallel distinetions
when paired with the mathematical machinery of
systems factorial technology framework described
next.

MEAN INTERACTION CONTRAST

Consider the subser of trials in which both
targets are presented. Hypothetical reaction time
results for the four salience combinations are
presented in Figure 4.8. Panel B depicts an additive
outcome, implying no interaction across different
levels of salience for the two channels. Panels
A and C depict the two different species of
interactions that might arise: A is overadditive,
implying that processing is slow only when bozh
channels are slow, and B is the under additive
species, implying that processing is fast only when
both channels are fast. Each factorial plot can be
summarized by a simple statistic: Double difference
(the difference of the pair of differences between the
two values defining each line), or Mean Interaction

Contrast (MIC},
(RT 11— RT 1) — (RT 1y — RH ),
where BT is the mean BT and L and H denote

low and high salience conditions, respectively.
Mean interactive contrast is zero for an additive
outcome, negative for underadditive interaction,
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Fig, 4.7 Schemarics of the double factorial paradigm (DFP} experiment.

and positive for overadditive interaction. These
factorial plots at the level of the mean are already
diagnostic with respect to the question of serial
versus parallel processing. The diagnosis is qualified
by the stopping rule in force, indicating whether
processing is minimum time self-terminating or
exhaustive (Townsend, 1974}, We will now derive
MIC predictions for four different models sum-
marized in Figure 4.9: parallel self-terminating,
serial self-terminating, parallel exhaustive, and serial
exhaustive.

First, assume a parallel architecture wich a self-
terminacing stopping rule. If cither channel is fed a
strong signal, then that channel completes process-
ing quickly, implying thac the overall response will
be fast. If both channels are fed weak signals though
(like a race of two weak and old horses against
each other), even the faster one will take a long
time. This gives rise to an overaddicive Interaction:
MIC(D) < 0.

1f we assume 2 serial architecture with the same
stopping rule, the rotal processing time is just the
average time taken at each stage, assuming different
processing orders are equally likely. Thus, when
both channels are fed strong signals, the response
is fast, and when both channels are low intensity,
the response is slow. On mixed intensity trials, the
faster channel is processed first half the time and the

slower channel is processed first in the remaining
half; hence, the overall RT is the mean of these
two completion dmes. This is consistent with an
additive ourcome: MIC(t) = 0.

Tn an exhaustive architecture, the system must
await processing of both signals (which practically
means awaiting completion of processing of the
low-intensity signal) before a decision is made. This
means that, in a parallel race, the response is
fast only when both channels are high intensicy,
meaning an underadditive ‘interaction: MIC{t) >
0. Applying the same logic to serial processing re-
veals that the architecture is still addisive (although
completion times differ from those attained with a
self-terminating stopping rule). Pur succinetly, MIC
is always zero in serial processing, positive in parallel
processing with a minimum time stopping rule, and
negative in parallel processing within an exhaustive
architecture.

SURVIVOR INTERACTION CONTRAST

These distinctions at the level of the mean are
useful, but their extension to the distribution level
provides further constraints and information. The
four RT distributions {i.c., different combinations
of target salience) can be sliced into small time bins
and a factorial plot, similar to those in Figure 4.8,
can be derived at each time bin. The resulting MICs
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Fig. 4.8 Three different ourcomes of the Mean Interacton Centrast in a Stroop experiment.

can then be plotted as a functicn of time, #, for the
entire distribution. The mathematical predictions
become simpler when applying the momentary
values of the respective survivor functions, S(2),
(rather than the MICs or CDFs), and the resulting
curve is dubbed the Survivor Interaction Contrast
(SIC; Townsend and Nozawa 1995). The SIC
permits a distinction berween different species of
parallel models {e.g., race versus co-activaton}
and Townsend and Nozawa (1995) derived fully
diagnostic functions for various combinations of
architecture and stopping rule (summarized in

Figure 4.9).

SELECTIVE INFLUENCE

Analysis at the distribution level can also provide
supporting evidence on selective influence, a critical
stipulacion for derivations based on the facrorial
manipulations. Selective influence means that a
given factor or manipulation affects only the in-
tended process or channel. A distinet ordering of the
survivor functions (for the four R distriburions) is
predicted with the following condition in force:

S(LOW, LOW) > S(LOW, HIGH),
S(HIGH, LOW) > S(HIGH, HIGH)

atal] time z. Recall that the frst factor is the salience
of the word and the second factor is the salience of
the color. Violation of this ordering compromises
interpretations based on the interaction contrasts.
One should pote though that the presence of the
predicted ordering does not prove the assumption
of selective influence. It is a necessary but not
sufficient condition (i.e., the same ordering could

have been obrained even if selective influence were
violated).

WORKLOAD CAPACITY

Finally, consider briefly the other leg of the
DFEE the factorial manipulation on the number
of targets presented. This design is well suited
to probe the sensitivity of the system to changes
in workload. Recall the definition of the capacity
coefficient that we gave in the section, Basic Issues
Expressed Quantitacively, keeping in mind that the
log survivor function is idendical to the integrated
hazard function, H(£). The numerator in our
Stroop task example comprises the redundant-target
trials in which the word RED is written in red ink.
In the denominator, we have the same functions
estimated from trials in which each channel appears
in isolation. So:

H(REDinred)(z)
H{RED ingreen)(#} + H(GREEN inred)(#)

Cogl(t) =

Congeptually, chis can be thought of as measuring

the processing relationship between the “whole” in
the numerator and the “sum of its parts” in the
denominator.

We can think of the capacity coefficient as
measuring the workload capacity relative to the
benchmark UCIP model. Reiteraiing the predic-
tions from the section Basic Issues Expressed Quan-
titively, when channels are independent and parallel
(as in the standard UCIP model), then the ratio
is 1 and the system is unlimited capacity. When
presenting two (multiple) targets concurrently slows
the rate of processing, C(£) < 1, the system js
limited capacity, which is less efficient than UCIP
Furthermore, if the system is limited to the extent
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that performance with double targets is worse than
with the faster of the two individual targets, or in
terms of the capacity coefficient, then

log{ MIN[S4(2), Sp()]}
log [Sa(z) - Sp(2)]

and the Grice inequality is violated (Townsend &
Fidels, 2011). In this case, the system is of severely
limited capaciry.

Conversely, if the presence of two targets speeds
up the ability of the system to process cach target,
C(#) > 1, the system is supercapacity, which is more
efficient than UCIP. Note that, when (target) signals
are presented simulianeously to two channels,
detection is usually faster than when a single signal
is presented in one channel. This redundant target
effect can derive from mere statistical facilitation
(the minimum of two random varables has a
smaller mean even than thar of the faster of the
individual random variables alone). However, if the

Cor(®) <

channels interact, a larger redundant target effect
can be expected. If the former is the case, the Miller-
or race-model inequality (sec the section Basic Issues
Expressed Quantitatively) must hold:

F(RED in red)(s) < F(RED in green)(s)
++ F{GREEN inred) (),

where F denotes the RT CDFs for the respective
redundant target and the two single target condi-
tions. When chis race-model inequality is violated,
traditional thinking has been that all parallel race
models are thereby falsified (also observe that
satisfying it does not mean that the model is
necessarily parallel). However, it is straightforward
to construct parallel race models exhibiting super
workload capacity that readily violate Miller’s race
model bound (for examples, see Townsend &
Wenger, 2004a). Such models can be created
through mutual channel facilitation. Tt has been
suggested that configural perception (e.g. words,
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faces, other Gestalts) may be explained by such
parallel channel facilitation {e.g., Fidels, Townsend,
& Pomerantz, 2008; Wenger & Townsend, 2001;
2006; but see Eidels et al., 2010 and Eidels, 2012).

In their original development, Townsend and
Nozawa (1995) showed thar the Miller and Grice
inequalities can be recast as statements abour the
capacity of the system. When boch held, the system
capacity falls between those extremes and, thus,
could be of moderately limired capacity, unlimired
capacity, or moderately supercapacity. If Grice
inequality is violated, the system is of severely
fimited capacity. If Millers inequality is violated,
the system is of supercapacity {at that #). In a
related development, Colonius (1990) has shown
earlier that if cthe marginal probabilities F(Red
in red)(t) and F{Green in red){t) are invariant
from the single target to the redundant target
conditions, then the Miller and Grice inequalities
cortespond to maximum negaiive and positive
dependence berween parallel channels (see also
Van Zandt, 2002). Subsequently, Townsend and
Wenger (2004) showed that, interestingly, actual
dynamic parallel systems whose channels interact
by assisting one another (e.g., an increase in
information in one channel leads to an increase
in other channels} typically dont produce invariant
probabilities and do produce supercapacity and
maybe violate Miller’s inequality (in apparent, but
not real, contradiction of Colonius’ mathematically
impeccable theorems). Conversely, typical dynamic
parallel systerns with mutually inhibiting channels
evidence negative correlations, again cause failure of
marginal invariance, and effect strong slow-downs
of processing and possible violations of the Grice
inequality.

Cognitive-Psychological Complementarity
How well or poorly have these developments
been incorporated into mainstream cognitive psy-
chology? Without atrempting an exhaustive analysis
of the vast volume of research in current cognitive
science, it is fair to say that the influence on
substantive theorizing and experimentation of the
mathematical developments has been uneven at
best. Although early work on parallel and se-
rial processing by Estes, Murdock, Schweickert,
Dzhafarov, Egeth, Bernstein, Biederman, and
Townsend (among others) has been well accepted
in mainstream cognitive psychology of the time
{early 1970s) and had a sobering influence on the
field, this work has been subsequently ignored and
superseded by the following groundless logic:

If, in a search task, the mean RT is lincarly
related to the number of stimuli and this function
has a positive slope, then serial processing is
implied.

Theories based on this untenable statement
engulfed the field to the extent chat mathemarical
proofs and violations have been completely ignored.
It is only during the past decade that cognitive
psychology has finally overcome this detour from
logic and mathematical rigor.

Ignoring Parallel-Serial Mimicry: The Case
of a Linear RT-Set Size Function with a
Positive Slope

Treisman’s celebrated work on feature integration
theory {e.g., Treisman & Gelade, 1980; Treisman &
Gormican, 1988; Treisman & Schmidt, 1982) can
serve as a convenient point of departure. This work
suggests that when searching for a target that differs
from nontargets in terms of a single conspicuous
feature (e.g., color, orientation, or shape), the
number of elements in the display matters litle
(feature search). However, when the target is defined
in terms of a conjunction of features (such as a
red vertical line among red tilted lines and green
vertical lines), search time increases linearly with
the number of elements in the display {(conjunciion
search). In the theory, the main diagnostic tool to
tell the two types of search apart is the slope of the
respective RT-set size functions. The steep slopes
obtained with conjunction targets ate interpreted to
implicate serial search, whereas the much shallower
slopes with the one-dimension feature targets are
interpreted to implicate parallel search. '

Feature integration theory has had 2 tremendous
impact on attention research — as of the printing
of this chapter, those three articles alone combine
for close to 10,000 citations in the literature. And,
this theory is mentioned as a major accomplishment
in Treisman’s achievement of the highest scientific
honor the Unired States can offer, the coveted Na-
tional Medal of Science. The associated burgeoning
literature helped to uncover valuable aspects of the
cognitive processes engaged when people search for
a target (whether in a cluttered computer screen or a
crowded airport terminal). A less salutaty outcome
of this trend has been neglect of the possibility of
mimicry. Many investigators have ignored proof
that a putatively serial (mean}RT funcrion can be
mimicked by a parallel one and vice versa. For
a trivial yer telling example, Townsend (1971a)
was referenced by Treisman and Gelade {1980} but
the citation concerned the makeup of the stimuli,
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not the assay of parallel versus serial processing!
Generations of cognitive psychologists appear to
have been rendered oblivious to the developments
in mathematical psychology on the importance and
(im)possibility of distinguishing between parallel
and serial processing based on straight line mean RT
functions (cf. Townsend, 1971a; 1990a; Townsend
& Wenger, 2004b).

The difference between feature search and con-
junction search impacted ensuing research to the
extent that quite severe violations of the original
pattern of resubs and conclusions, undermining
basic tenets of the theory, were largely overlooked.
Consider the study by Pashler {1987) for an
instructive example. In relatively small displays of
up to eight items, Pashler found the same slope for
target-present and target-absent trials. This resulc is
consistent with a serial exhaustive search rather than
with the serial selfterminating search suggested
by the theory. In a further experiment, Pashler
added a second target on some portion of the
trials and found a redundancy gain, the mean RT
was faster when the display included wwo targers
than when there was a single target. Redundancy
gain is incompatible with both exhaustive and self-
terminating varieties of serial models (cf. Egeth &
Mordkoff, 1991; see also, Egeth, Virzi, & Garbart,
1984).

These findings disconfirm the theory themselves,
but the fact remains that they (along with a
fair number of similar resules) generated litdle
traction at the tme. The bright side to the story
though is the increased use of the redundanc target
heuristics. From a modest start in the late 1960s
(e.g.. Bernstein, Blaken, Randolph, & Hughes,
1968; Egeth, 1966), this type of experimental
design evolved into a major tool not only for
investigations into visual search but for uncovering
aspects of elementary cognitive processes in general.
Nevertheless, ourside of the work of a few inves-
tigators such as H. Egeth and colleagues and our
own research, the visual search literature and that
focusing on redundancy have unfortunately been
largely nonintersecting.

Egeth and Mordkoff (1991) used the redundant
target design in tandem with Miller's race model
inequality as a further means of theoretical reso-
lution. They concluded that the large violations
of the inequality found were incompatible with
any species of serial processing (and with certain
varieties of parallel processing).

In another interesting interrogation, Pashler

and Badgio (1985) included trials in which all

RN

items were visually degraded and found the effects
of set size and degradation to be additive. The
additive partern clearly refutes models of serial
identification. A conceptually similar study (indeed,
complementary to that by Pashler & Badgio, 1985;
cf. Pashler, 1998) was conducted by Egeth and
Dagenbach (1991). In their study, the observers
searched two-element displays in which each item
could be visually degraded independently of che
other element. The authors found a subadditive
pattern, confirming again a parallel process of letter
identification.

Townsend and Nozawa (1995) investigated the
redundant target paradigm along with a range
of RT inequalities in a more general context,
developing measures for che identification of dif-
ferent cognitive architectures. Survivor function
interaction contrasts and processing capacity play
key roles in this effort. In particular, Townsend
and Nozawa showed that Miller’s inequality (among
other RT inequalities} is actually a statement about
che capacity of the process under test. What these
developments demonstrate is the futility of drawing
strong conclusions based on any simple RT (detec-
tion) function, if for no other reason than the brutal
reality that many if not all such functions can be
mathematically mimicked (e.g., Dzhatarov, 1993,
1997). A broader angle of attack is needed, one
guided by a system of theorems and associated tools
(the SFT proved serviceable in that role) within the
framework of which absolute or mean RTs or den-
sity functions serve as points of departure. In this
respect, Townsend and Wenger (2004a) generalized
the carlier results to include conjunctive, rather
than only disjunctive, decisions and illustrated
their findings within the large class of interacting
channels, parallel, linear stochastic systems.

A very selective review of the major Andings
in the field of speeded visual search during the
past three decades reveals that a wealth of stimulus
properties (spatial distribution of the items, rarget-
distractor similarity, stimulus discriminability or
task difficulty, practice, common shape and/or
sernantic category, and even particular attributes
such as form and color) have increasingly replaced
the number of stimuli (set size) as the variable of
interest. The dichoromy, efficient-inefficient search,
has been gradually superseding the dichotomy,
parallel-serial processing.

This course comprises a rather mixed bag. On
the one hand, it reflects the growing recognition
by cognitive scientists of the pertinent mathematical
developments. In this respect, it took some 20 years

88 ELEMENTARY COGNITIVE MECHANISMS



for psychologists to finally conclude that models
are needed that move “beyond Treisman’s original
proposal that conjuncdon search always operarte
serially” (Pashler, 1998, p. 143). On the other
hand, the same course also reflects a tendency of
moving away from the issue of parallel versus setial
processing altogether.

This is unfortunate because, for all the
difficulties involved, the issue #s tractable and it
is consequential for a wide range of cognitive
processes. What we need is a naturally emerging
integradon of a given RT model and a certain
cognitive theory. RT data, especially those em-
bedded within a larger system, provide rich infor-
mation about cognitive processing. Nevertheless,
given the prevalence of mathemarical and stacistical
equivalence, RTs, even when sustained by explicit
models, will not always be diagnostic (cf. Van
Zandt, 2002). It is ac this juncture that the need
for substantive theory becomes pellucid. Van Zandt
(2002, p. 506) concludes chat it is, therefore, “very
important that RT analyses be conducted in the
context of... mechanistic... explanations of the
process under study.”

Speeded visual search continues to fascinate
investigators because it is such a ubiquitous hu-
man activity (from locating your baggage on the
conveyor belt in the terminal to picking up your
favorite Cheerios in the crowded aisle of the grocery
store to finding your article in the list of those
appearing in the journal). The theory proposed
and periodically revised by Wolfe (1994; Cave &
Wolfe, 1990), Guided Search, suggests that all
kinds of searches {whether feature or conjunction)
involve two consecutive stages. The firse stage
enaails the simultaneous activation of all potential
target features. Activity in the second stage is
guided by the outcome of the first (i.e., the
distribution of activations of the various features),
testing serially combinations of activated features
uncil one matches the target. The theory entails
the notions of parallel and serial processing, but
envisages situations in which either one can become
gratuitous. Incorporating further flexible features,
the theory is able to account reasonably well for a
broad range of data.

Another influential approach implicates similar-
ity as the major determinant of search (Duncan
& Humphreys, 1989). A little noticed aspect of
the original Treisman experiments is that each
nontarget shares a feature with the conjunction
tarpet (hence is similar to the target), whereas in
feature search each nontarget is different from the

target. Duncan and Humphreys showed that search
is easy for a distinctive target on the background
of relatively uniform distractors bur it is difficult
on the background of highly diverse distractors.
More recently, Ben-David and Algom (2009; see
also Fific, Townsend, & Eidels, 2008) applied
the machinery of SFT to uncover the influence
of species of target and distractor similarity and
sameness {physical, nominal, semantic} on various
aspects of the architecture of the underlying process.

The additive factors method itself has been
incorporated inte mainstream cognitive research to
the extent that, more often than not, Sternberg
is no longer even referenced, Of the mulritude of
studies, the sustained program of research by Besner
and his associates (see Risko et al. 2010, for a
recent contribution) stands out for the methedic
application of the additive factors method to probe
reading processes. For example, in the study by
Borowsky and Besner (1993), context or meaning
was found to Interact with word frequency, on the
one hand, and with stimulus quality, on the other
hand, yet the latter two factors were addicive. The
pattern of joint effects was accommodated by a
multistage activation model. Nonetheless, it might
be well worth to employ the kinds of strategies
outlined herein to falsify or accommodate the
various types of models in a nonparametric fashion.

When discussing models, we should address (but
space does not allow us to truly address) the issue
of the degree to which processing across different
stages is discrete or in cascade. Thar is, we conceive
of processing on different iterhs or subsystems as
occurring in a sequential manner but which may
overlap in time. These are often referred to as
continuous flow systems. Taylor {1976) was one
of the first to proceed to a quantitative analysis
of such models but others soon followed {e.g.,
McClelland, 1979; Miller, 1988). Let us just
note that McClelland (1979) sanctioned the use of
additive factor methodology to identify separable
stages of processing, and that, separately, Ashby
and Townsend (1980), Ashby (1982) and Roberts
and Sternberg (1993), too, have demonstrated that
purely cascaded models can produce additive effects
on the mean RTs (provided cerrain boundary condi-
tions are respected; see O’Malley & Besner, 2008).
Schweickert and Mounts {1998) studied and made
predictions from a quite general class of continuous
How systems. The issues are quite complicated and
the interested reader should consult Logan (2002)
on the broad distinction berween discrete and
continuous processing. More general and robust
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metatheoretical effort is required to cxperimentally
and effectively segregate such systems from ordinary
parallel and serial systems.

Extending the Metatheory to
Encompass Accuracy

The great bulk of the theory enveloped in this
chapter has featured response times. However, cet-
tain (incladed) theory-driven experimental designs
were based on accuracy, such as the paradigms
utilizing second-guesses. Recall that the second-
guess strategy exploited the fundamental ability of
parallel systems to represent many objects (iters,
features, channels) in partial states of completion
as opposed to strict serial systems being confined
t0 a single object in a partial state of completion.
Compared with factorial strategies, these larrer
techniques have been woefully underused but, as
noted, have seen some renewed activity recently.
There are some other directions chat should be

broached.

Extending Capacity Theory to Include
Accuracy: Moving Beyond Simple
Speed-Accuracy Tradeoff

The motivation to extend our capacity theory to
include accuracy is twofold. Foremost, the more
observable variables there are to constrain models
and theories, the better. Additionally, measures
that can simultancously gauge and combine speed
and accuracy can address important questions that
neither alone is able to do. A specific manifestacion
of the relation of speed to accuracy arose in the
1960s and was called the speed-accuracy tradeoff
(e.g., Pew, 1969; Pachella 1974; Swanson & Briggs,
1969; Yellott, 1971). The idea here is that one must
be wary when observing say, a speed-up in one’s data
and drawing perceptual or cognitive conclusions.
The reason is that the error rate may have increased,
perhaps reflecting an alteration of a decision cri-
tetion rather than an improvement in cognitive
efficiency.

Tt has been obligatory in cognitive psychology
ever since, when either response times or accuracy
changes, to check out how the other is varying.
For instance, if the experimenter increases workload
in a task and errors increase, she/he makes sure
that response times stay the same or increase. It
is then concluded that there is no speed-accuracy
trade-off. This inference is unwarranted. Consider
the following possibility: The workload is harder

and errors increase, but the participants have

nonetheless also increased their decision criterion
2 modest amouns, but not enough to offser the
increase in errors. So, there has indeed been a
speed-accuracy trade-off in the sense that even
higher inaccuracy would have occurred had not
the participancs altered their criterion. This kind
of subtlety requires a quantitative approach to be
adjudicated.

Qur tactic has been to extend the response-time
based workload-capacity function developed earlier
(see Basic Issues Expressed Quanticatively and The-
oretical Distinctions sections) to include accuracy
(Townsend & Altieri, 2012), Detail is ruled out
in this chapter, bur the basic trick is to work out
the predictions for the siandard parallel class of
models that are themselves enlarged to generate
errors. In addition, for most of the speed-accuracy
combinations, the value-loaded term capacity is
inappropriate. For instance, is it higher capacity
and, therefore, “better” to be fast and inaccurate or
slow and accurate? For such reasons, it was necessary
to introduce value-free terminology, in this case,
che term assessment function called A(z). Then the
assessment funcrions are assembled, as was the
traditional statistical function, in a distribution-free
and nonparametric manner. A simplified, symbolic
formula is

Pobe (speed is fast and error occurs)

A(ﬁ) =

Poar(speed is fast and error occurs)

where obs=observed from dara and par=theoretical
prediction on the basis of the standard parallel
model.

Furthermore, either the numeraror or denom-
inator can be decomposed into separate accuracy
and conditional response time elements. ‘Thus,
Pobs(speed is fast and error occurs) = Pobs(speed
is fast and error occurs) Pobs(error occurs). Then
comparison of the observed and predicted quan-
tities can aid in a number of useful theoretical
inferences. For instance, initial analysis of an AND
condition carried out by Ami Eidels (personal
communication; see Townsend & Altieri, 2012)
shows that the above A(¥) > 1 indicating that the
observed joint event of error-plus-speed in terms
of response times and inaccuracy greatly exceeded
that expected from the standard unlimited capacity
independent parallel model. Furthermore, error-
plus-slow tended to move in the other direction;
that is, roward the A(r) = 1 line. Next, the correct-
plus-speed A(r) < 1 by a massive degree, whercas
that for correct-plus-slow was a bic higher but still
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quite low. All this is predicied by parallel models,
which are limited capacity.

We next decomposed the statistics as just de-
scribed and discovered that inaccuracy was consid-
erably greater from that predicted by the standard
model. This aspect then contributed to this specific
Alt) > 1. However, it also transpired that, given
that an error occurred, the likelthood of a fast
response was also greater than thac expected from
the standard prediction. In fact, it appeared that
overall, speed was greater than expected whether
conditioned on correct or incorrect performance
although most impressive when incorrect.

Some tentative interpretations of these results,
as well as for an OR condition, were offered in
Townsend and Altieri {2012). However, it is simply
the case that we know very little about how even
parameterized models will reflect limired capacity
effects when both accuracy as well as response
times are analyzed. For instance, suppose, as is
usually assumed, thar changes in difficulty, when
accomplished within trial blocks, indicate omnly
changes in correct and incorrect processing speeds,
not any change in decision criteria. The truth is,
we don’t know to what extent an increase in errors,
as in the AND data above, exhibit lower or higher
(as eatlier) speeds than would be predicted by the
standard parallel model, all on the bases of only
changes in processing rates.

We anticipate that analysis of traditional models
of response times and accuracy, such as parallel
diffusions and races as well as serial models plus
examination of many data sets, will show the way
to a considerably enhanced understanding of speed
and accuracy. As a single example of this type
of progress, we mention a recent expansion of
the accuracy-oriented general recognition theory
{(Ashby & Townsend, 1986) to stochastic parallel
systerns, which thereby includes response times
as well and the patterns of confusion (Townsend,
Houprt, & Silbert, 2012).

Model Mimicking in Psychological Science

Psychological, cognitive, and brain sciences are,
outside the most ludicrous parody of behaviorism,
black box enterprises in which hypotheses about
inner workings must be made and tested. The
brain sciences are included here due to the brain’s
amazing complexity. Even if we were without
society’s ethical and moral strictures (and a good
thing we are not), the brain’s machinery is so myste-
tious that even with behavioral and neuroscientific

approaches together, we are a little like a bunch
of educated squirrels watching people drive, then
poking about under the automobile’s hood at night
and drawing profound squirrel-science inferences
about auto design, functioning, and maintenance.
Nonetheless, the resources of mathemarical mod-
eling, neuroscientific knowledge and techniques,
and excellent behavioral and neuropsychological
experimental designs offer the best we can hope for.

Before moving on and as stated in our intro-
duction, all the warnings abour pitfalls associated
with varicus aspects of mathemartical modeling pale
in comparison with verbal theorizing. FElectrical
engineering and computer science have long pos-
sessed rigorous quantitative bodies of knowledge;
we could call them metatheories, of how to infer the
internal mechanisms and dynamics from observable
behavior. One of the most elegant of these is that
associated with deterministic finite-state automata,
Of course, when the number of states becomes
infinite or random aspeces intrude, things get more
complicated. Yet even these accommodate math-
ematically rigorous and applicable methodologies.
Naturally, the obvetse side of the coin of “degree
of uniqueness” of 2 prospective description of an
observed system is the “class of mimicking models”
(using our terminology). Even within the class
of finite-state automata, however much data is
collected, there will always be an equivalence class
of machines able to predict said data. If che average
graduate student in psychology were a lirtle better
prepared in mathematics, at least one course in such
a topic would provide a beneficial and sobering
message regarding the challenges facing them in
their careers.

The fact that even so diametrically opposed
concepts as are embodied in parallel versus serial
processing systems can readily be mathemauically
equivalent within common and popular paradigms
should, along with the implicit forewarnings
from other sciences, lead an incipient science
like psychology to emphasize the study of such
challenges in training their students and planning
and carrying out their own research programs. Alas,
that prescription does not seem likely to eventuate
in the foreseeable future. However, mathemarical
psychology can strive to better train their own
people in these marters, and conduct their own
research accordingly.

It should be evident that the use of metatheory
to experimentally segregate large classes of models
(e.g., all parallel models} within a certain domain
comes up short with regard to specifying a highly
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precise and detailed computational account. We
have, therefore, proposed that researchers adopt
a kind of successive sieve approach, where finet-
grain models are probed at each step. Thus, after
determining, say, serial processing in a memory
task, then one might begin to assess certain
particular process distributions. This approach is
complementary to Platt’s strong inference tactic, but
not the same. Next, it is important to ponder
the different echelons at which model and theory
mimicking can take place, as we sec in the following
subsection.

Species of Mimicry

First, chere is mathemartical equivalence such
as we have discovered over many decades (e.g.
Townsend 1972, 1976a; Townsend & Ashby, 1983;
Townsend & Wenger, 2004b; Williams, Eidels, &
Townsend, 2014). Little had been accomplished in
terms of model identification in psychology outside
of seminal work in mathematical learning theory
by Greeno and Steiner (1968). Their rigorous
effores explored identifiability issues in leasning
and memory theories based on Markov chains.
However, within the realm of closed-form proofs of
mathematical equivalence, the work of Dzhafarov
should be mentioned. Consider the quite general
class of all models based on a race of two or more
parallel channels. The Grice models {e.g., Grice
et al., 1984) are members of this class. They place
all the variance in the decision bounds. Other
models such as the Smith and Vickers (1988; see
also Vickers, 1979) accumulator model or the
race models of Townsend and Ashby (1983) or
Smith and Van Zandt (2000) place the variance
in the state space of the channel activations.
Dzhafarov (1993) proved that in the absence of
assumption of specific disuibutions, these classes
are mathematically equivalent within the usual
experimental designs.

As we have seen, with a little luck and lots of
hard work, one may aspire to employ the very
metatheory used to demonstrate mode] mimicking
to aid in the design of experiments that test the
model classes at deeper levels. Second, there is
incomplete but exact mathematical mimicking to
consider. For instance, a class of models might
mimic a nonequivalent type of model at, say, the
level of the first and/or second moments (i.e., mean
and variance) but not be completely equivalent. A
case in point is the prediction of mean response
time additivity by standard serial models. As one

——;7

could expect, this prediction can be made by a huge
class of alternative models, as proven by Townsend
(1990b). The constraints put on the mimicking
model class are extraordinarily weak. Just including
variances helps a lot buy, of course, does not torally
remediate the problem (e.g., Schneider & Shiffrin,
1977: Townsend & Ashby 1983, chapters 6, 7).

Third, there is mimicking by approximation.
Though perhaps not so intriguing as mathematical
equivalence, it is more widespread than the latter
and at least as underappreciated by the average
rescarcher. Examples of this type of mimicking in
the present venue are the abililty of sequential, but
not strictly serial, continuous flow dynamic models
to predict approximate additivity of mean response
times (e.g., McClelland 1979; see also Schweickert
et al., 2012, chapter 6).

It is likely that the chird type of mimicking is
that which threatens the bulk of model testing in
the licerature. Ordinarily, two, somectimes more,
parameterized models are compared in their ability
to fit or predict numerical data. Now, if psychology
possessed a level of precision of measurement even
remotely close to that in, say, physics or maany
areas of chemistry, then this policy might be quite
optimal. Why test entire classes of models, when
you can move directly to the precise model, with all
its exact formulas and estimate parameters and chus
be done?

Unfortunately, the tolerance of psychological
data is much too coarse for such a hope to
be realized. Some help is afforded by way of
comparison of models against one another, rather
than simply fitting on€’s favorite model to the
data. However, even here, the possibility exists
that one or the other model will simply fail to
fit the data, even as well as another model, due
only to the specific quantitative formulation of the
psychological precepts, rather than the fundamental
characteristics of the latter, For instance, consider
an investigator who has correctly pinpointed the
proper architecture, stopping rule, and so on for
a task but failed to employ the valid associated
stochastic process. Thus, perhaps the architecture is
standard parallel, with each channel being described
by a race between the correct and incorrect alter-
natives, the race disuibutions being gamma. Our
hapless investigator inappropriately has selected
Weibull distributions to describe each channel’s
race. Meanwhile, a theoretical comperitor might
produce an incorrect specification of the architec-
ture (e.g., serial), but employed a set of stochastic
processes that adventitiously provide a superior fit.
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Another vital aspect of model testing in cognirive
science, has always been the issue of whether
one model is merely more complex than anocher
and thus can reach sectors of the data space that
are unavailable to its competitors. Attempts to
ameliorate this challenge have long depended on
the assumption that if two models possess equal
numbers of parameters, they must be of equal
complexity. This is rarely the case, as has been
recognized for some time. Indeed, we have shown
that large classes of models of classification (e.g.,
identification, categorization) can be much more
falsifiable than other classes, though they possess a
huge number of parameters (Townsend & Landon,
1983). A special case of some interest is the well-
Jnown similarity choice model {(Luce, 1963), which
is much more fexible in its model fitting ability
(often referred to as the champion model of human
pattern recognition) than competitors, such as
the overlap model (Townsend, 1971b} though the
number of paramerers is identical.

A deep and vital antidote, when it can be
brought to bear, is the quantification of model
flexibility-to-fit data, through cutting edge theories
of complexity (Myung & Pitt, 2009). This approach
is able to quantify a models complexity and
compensate for it in model comparisons. The main
obstacle here is that so far, only models with certain
types of pellucid specification are subject to this
analysis, at least in realistic computational terms.
Nonetheless, as compurers powers continue to
augment, this strain of technology offer hope for
the future of complﬁx psychologica] science.

We have had little to say, beyond mere plau-
tudes, concerning aspirations of merging principled
quantitative modeling with cognitive and sensory
neuroscience and especially neuroimaging. Some
extremely credible senior psychological commenta-
tors arc frankly skeptical of the contributive power
of neuroscience and in particular, neuroimaging, to
the cognitive sciences. We urge serious reflection on
the observations of William Uttal (e.g., 2001) in
this vein. Though we do not fully agree with his
final inferences, we are convinced that his astute
scrutiny can only serve to improve the science and
its associared methodologies.

The past several decades have seen a vibrant
growth of modeling extending from basic psy-
chophysics to higher mental processes to complex
social phenomena. Tt seems inevitzble that such
multifaceted models, even when found to predict
or fit data in an accurate manner, will be vulnerable
to a broad spectrum of competitive, mimicking

alternative conceptions. We believe thar fields
endeavoring to explain or predict human behavior,
including those based on neurophysiology, will
progress faster by developing appropriate mera-
theories of mimicking, and how to best circumvent
these experimentally.

Conclusions and the Future

e The resurgence in the 1950s and 1960s of
research attempting to identify mental mechanisms
and irs continuation today prove that cognitive
psychology can be cumulative as well as
scientific.

o Mathematical models have made substantive
ingress to cognitive psychology since 1950 and
made many centributions to rigorous theory
building and testing.

s Nonetheless, even in the realm of
mathematical modeling, mimicry of one model or

Box 2 Model Mimicking in Psychology

From one vantage poing, it might seem that
model and theory mimicking reside in a fairly
small and technical dominion of scientific
psychology. Yet, in a broad sense mimicking
is ubiquitous. Fvery time two theoretical
explanations are in contention, it is because
the data at hand ate not decisively in favor
of one over the other. That is, mimicking
at one or more levels is occurring and it is
up to the champions of either approach, or
“innocent bystanders”, to invent new observa-
tions to resolve the issue. Within the realm of
verbalized theory, what often happens is that
the two theoretical structures evolve, due to
ministrations from their advocates in order to
conform to the latest data. The end resultis chat
the theories may end up still handling the larger
corpus of data, each being significantly more
complex (and thus more difficult to falsify), and
yet remaining empirically indistinguishable. A
famous case in point is the decades-long clash
of the mare behavioristic theory of Clark Hull
versus the more cognitive theory of Edwin
Tolman. Though fundamentally distince in
their theotetical foundations, their long-lasting
struggle must be said to have eventually faded
away inconclusively. Mathematical modeling
and the explicit study of model mimicking
seems a promising remedy for such ailments.
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class of models by other models, poses a formidable
challenge to science building in this complex arena.

o Metatheory is, in our approach, a theoretical
and quanttative enterprise that attempts to
formulate highly general mathematical
characterizations of psychological notions in such a
way as to point toward development of robust
experimental methodologies for systems
idennfication.

o The reviewed body of research on metatheory
has led to redoubtable methodologies for assessing
various strategic aspects of elementary cognicion in
a manner that is resistant to model mimicking.
Most of the new theory and technology is founded
on distribution and paramerer-free theorems and
methods.

e As of now, the metacheory and associated
methodologies are largely segregated into those
resting on RTs as observable variables and those
relying on patterns of accuracy as observable
variables.

» A major goal for the immediate future s to
create a unified theory that merges both Rls as well
as accuracy. First steps have been taken in that
direction.

o Very litde is known about the perils from
model mimicking to incremental science in more
complex spheres of cognitive science. It may be
that such theoretical research will be indispensable
to future methodologies, if cognitive science is to
avoid devolvement into 2 maundering, largely
inconclusive field.

Notes

1. OF course, in-between cases are often used, for instance,
thar of the highly popular single-target-among-distractors. In
such a design. the processor may cease as soon as the target is
located.

2. Ift,, ¢ are independent random variables then the
previous srarement will hold trie. However, if we assign distiner
random variables to the acual processing dmes in parallel and
serial systems, then very broad questions can be asked and
answered with. regard to viral parallel-serial mimicking issues
(Townsend & Ashby 1983, chapter 1).

3. From Eq. 1 we can also derive the pdf, £z}, of an
independent race model with two paraliel channels (i.e. the
probability chat channel A or channel B finish at time ), which
is fenr) = £4(0)- Sa(0)+ S0 f o).

4. Stochasric serial models are a bit more complex, since one
needs to take into account the order by which process occur
(e.g.. channe! A before B or vice versa). Full trearment is given
in Townsend and Ashby (1983).

Glossary
Across-stage independence; Assumes the independence of
intercompletion times in serial models. Ir is defined as the
property thar the probability density funcrion of two or
more stages of processing is the product of the component
single-stage density functions.

Tog[S48(4]

- Capacity coefficient: Cpp(s) = RN Is a

measire for processing eficiency as worldoad {number of
signals to process) increages, C(#)=1 indicates unlimited
capacity — performance is identical to that of a benchmark
ICIP model (see later). C(A < 1 and C{£)> | indicate
limited and super-capaciry, respectively. Cog(} s appro-
priate for OR rasks, while 2 comparable index, Canp (.
exists for the AND case, witha differens formula but similar
interpretation. '

Comulative distribution fanction (cdf): Ft) = pfT<t),
gives the probabilicy char che process of interest is finished
before or ar time &

Deterministic process: Always yields a fixed result, such
that the effect or phenomenon we observe has no variability.

Exponential distribution: A probability distribution that
describes the time berween events in a Poisson process. It
is very useful in response time modelling, and has the form
fle=uve"", where v is the rate paramerer. It also has che
“memory-less” property, meaning that the likelikood of an
event to occur in the next instance of time is independent
of how much time had already passed.

Grice inequality: Fyp(t) = MAX[F4(), Fg(#)]. This
inequality stetes that performance on double-targec trials,
Fyp (1), should be faster than (or at Jeast as fast as) that in
the faster of the single-targer channels. If this inequatity is
violated, the simulrancaus processing of two target-signals
is highly inefficient and the system is very limited capacity.
For instance, §f Fy(s) = Fy(s) then Cor(#) < 4. The
special case when Coglr) = 1/2 is referred o as fixed
capacity.

Intercompletion cime: The rime required for a srage
of processing o be complered. In a serial model, the
intercompletion times are just the processing rimes.

Mean Interaction Conerast (MIC): A test stacistic for
the interaction berween two factors with two levels each,
which allows zssessment of architecture and stopping
rule from mean RTs. Caleulared as the difference be-
tween differences of mean BI5 in a factoral experimeﬁt,
MIC = (RT7;—RT i) — RT 17— BT i), where RT is
the mean RT and L and H denote Jow and high salience
conditions, respectively. Because all stopping rules for serial
models predice that MIC = @, they cannot be distinguished
for serial models by MIC.

Probability density function. (pdf): /{2 = p(T = #), gives
the likelihood thar some process that takes random rime T
to comiplere will actually be finished ac time £

Race model (Miller’s) inequality: Fyg(#) < F, 24 (8)+ Fg(o).
This inequality scates that the cumulative distribution func-
tion for double-target displays, Fap(# cannat exceed the
sum of the single-targer cumulative distribution. functions
if processing is a race between parallel chanmels, with the
added constraint cher the margina! distriburions for A and
B do not change from when one of the two chamnels is
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Glossary

presented to when both are presented. This stipulation
is known as context invariance. When the upper bound
implied in the inequality is violated, capacity must be super;
that is, Cogr() > 1.

“Stage” of processing: The time from cne item finishing
processing to the next item finishing processing.

Stochastic independence: Two events are independenc if
the occurrence of one does nor affect the probabilicy of
the other. This conceprt can be expressed in terms of the
joinc pdfs, fap(ta.tn) = fa(za) - f5(tg)s which means that
the joint density of processes A and B both finishing at
tme 7 is equal to the product of the probabilicy of A
finishing at time #4 and the probability of B fnisking at
" time #3-
Stochastic process: The events cannot be characrerized by
fixed values and should be represented by a random variable.
A random vatiable does not have a single, fixed value but
rather rakes a set of possible values, with their likelihood
characterized by a probability distribution,
Survivor function: Sz) = I - A} = pfT>4), This
function is the complement of the cdf, and rells us the
probability thac the process of interest had nort yet finished
by rime =
Survivor Interaction Conirast [SIC{(t)]: Same as MIC but
caleulated for survivor funcrions, 5(¢), rather than mean KT’
at each time bin of & SIC(2) = [S1r(8)- Sep it — [Sppr(t)-
Szrzrt)]. The SIC(c) funcrions predict distinctive curves for
serial and parallel models for various stopping rules.
UCIP model: A processing model characterized by Unlim-
ited Capacity and Independeng Parallel processing channels.
Within-stage independence: The stztistical independence
of mntercompletion times across two or more paralfel
channels in the same stage,
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